add initial impl of debruijn terms

This commit is contained in:
Michael Sippel 2024-09-19 01:48:12 +02:00
parent 826077e37b
commit dbfe0cf4de
Signed by: senvas
GPG key ID: F96CF119C34B64A6
2 changed files with 282 additions and 0 deletions

View file

@ -1,5 +1,6 @@
-R . LadderTypes
terms.v
terms_debruijn.v
equiv.v
subst.v
subtype.v

281
coq/terms_debruijn.v Normal file
View file

@ -0,0 +1,281 @@
From Coq Require Import Strings.String.
From Coq Require Import Lists.List.
Import ListNotations.
Require Import terms.
Inductive type_DeBruijn : Type :=
| ty_id : string -> type_DeBruijn
| ty_fvar : string -> type_DeBruijn
| ty_bvar : nat -> type_DeBruijn
| ty_univ : type_DeBruijn -> type_DeBruijn
| ty_spec : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_func : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_morph : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_ladder : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
.
Inductive expr_DeBruijn : Type :=
| ex_var : nat -> expr_DeBruijn
| ex_ty_abs : expr_DeBruijn -> expr_DeBruijn
| ex_ty_app : expr_DeBruijn -> type_DeBruijn -> expr_DeBruijn
| ex_abs : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_morph : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_app : expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| varlet : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_ascend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_descend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
.
(* get the list of all free variables in a type term *)
Fixpoint type_fv (τ : type_DeBruijn) {struct τ} : (list string) :=
match τ with
| ty_id s => []
| ty_fvar α => [α]
| ty_bvar x => []
| ty_univ τ => (type_fv τ)
| ty_spec σ τ => (type_fv σ) ++ (type_fv τ)
| ty_func σ τ => (type_fv σ) ++ (type_fv τ)
| ty_morph σ τ => (type_fv σ) ++ (type_fv τ)
| ty_ladder σ τ => (type_fv σ) ++ (type_fv τ)
end.
(* substitute free variable x with type σ in τ *)
Fixpoint subst_type (x:string) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then σ else τ
| ty_bvar y => ty_bvar y
| ty_univ τ => ty_univ (subst_type x σ τ)
| ty_spec τ1 τ2 => ty_spec (subst_type x σ τ1) (subst_type x σ τ2)
| ty_func τ1 τ2 => ty_func (subst_type x σ τ1) (subst_type x σ τ2)
| ty_morph τ1 τ2 => ty_morph (subst_type x σ τ1) (subst_type x σ τ2)
| ty_ladder τ1 τ2 => ty_ladder (subst_type x σ τ1) (subst_type x σ τ2)
end.
(* replace a free variable with a new (dangling) bound variable *)
Fixpoint type_bind_fvar (x:string) (n:nat) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then ty_bvar n else τ
| ty_bvar n => ty_bvar n
| ty_univ τ1 => ty_univ (type_bind_fvar x (S n) τ1)
| ty_spec τ1 τ2 => ty_spec (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_func τ1 τ2 => ty_func (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_morph τ1 τ2 => ty_morph (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_ladder τ1 τ2 => ty_ladder (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
end.
(* replace (dangling) index with another type *)
Fixpoint type_open_rec (k:nat) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => ty_fvar s
| ty_bvar i => if Nat.eqb k i then σ else τ
| ty_univ τ1 => ty_univ (type_open_rec (S k) σ τ1)
| ty_spec τ1 τ2 => ty_spec (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_func τ1 τ2 => ty_func (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_morph τ1 τ2 => ty_morph (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_ladder τ1 τ2 => ty_ladder (type_open_rec k σ τ1) (type_open_rec k σ τ2)
end.
Notation "'[' z '~>' u ']' e" := (subst_type z u e) (at level 68).
Notation "'{' k '~>' σ '}' τ" := (type_open_rec k σ τ) (at level 67).
Definition type_open σ τ := type_open_rec 0 σ τ.
(* is the type locally closed ? *)
Inductive type_lc : type_DeBruijn -> Prop :=
| Tlc_Id : forall s, type_lc (ty_id s)
| Tlc_Var : forall s, type_lc (ty_fvar s)
| Tlc_Univ : forall τ1 L,
(forall x, ~ (In x L) -> type_lc (type_open (ty_fvar x) τ1)) ->
type_lc (ty_univ τ1)
| Tlc_Spec : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_spec τ1 τ2)
| Tlc_Func : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_func τ1 τ2)
| Tlc_Morph : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_morph τ1 τ2)
| Tlc_Ladder : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_ladder τ1 τ2)
.
(* number of abstractions *)
Fixpoint type_debruijn_depth (τ:type_DeBruijn) : nat :=
match τ with
| ty_id s => 0
| ty_fvar s => 0
| ty_bvar x => 0
| ty_func s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_morph s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_univ t => (1 + (type_debruijn_depth t))
| ty_spec s t => ((type_debruijn_depth s) - 1)
| ty_ladder s t => max (type_debruijn_depth s) (type_debruijn_depth t)
end.
Fixpoint type_named2debruijn (τ:type_term) {struct τ} : type_DeBruijn :=
match τ with
| type_id s => ty_id s
| type_var s => ty_fvar s
| type_univ x t => let t':=(type_named2debruijn t) in (ty_univ (type_bind_fvar x 0 t'))
| type_spec s t => ty_spec (type_named2debruijn s) (type_named2debruijn t)
| type_fun s t => ty_func (type_named2debruijn s) (type_named2debruijn t)
| type_morph s t => ty_morph (type_named2debruijn s) (type_named2debruijn t)
| type_ladder s t => ty_ladder (type_named2debruijn s) (type_named2debruijn t)
end.
Coercion type_named2debruijn : type_term >-> type_DeBruijn.
Lemma list_in_tail : forall x (E:list string) f,
In x E ->
In x (cons f E).
Proof.
intros.
simpl.
right.
apply H.
Qed.
Lemma list_in_concatA : forall x (E:list string) (F:list string),
In x E ->
In x (E ++ F).
Proof.
Admitted.
Lemma list_in_concatB : forall x (E:list string) (F:list string),
In x F ->
In x (E ++ F).
Proof.
intros.
induction E.
auto.
apply list_in_tail.
Admitted.
Lemma list_notin_singleton : forall (x:string) (y:string),
((eqb x y) = false) -> ~ In x [ y ].
Proof.
Admitted.
Lemma list_elim_notin_singleton : forall (x:string) (y:string),
~ In x [y] -> ((eqb x y) = false).
Proof.
Admitted.
Lemma subst_fresh_type : forall (x : string) (τ:type_DeBruijn) (σ:type_DeBruijn),
~(In x (type_fv τ)) ->
(subst_type x σ τ) = τ
.
Proof.
intros.
induction τ.
- reflexivity.
- unfold type_fv in H.
apply list_elim_notin_singleton in H.
simpl.
case_eq (x =? s)%string.
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHτ.
reflexivity.
apply H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
Qed.
Lemma open_rec_lc_core : forall τ j σ1 i σ2,
i <> j ->
{j ~> σ1} τ = {i ~> σ2} ({j ~> σ1} τ) ->
τ = {i ~> σ1} τ.
Proof with (eauto with *).
induction τ;
intros j v i u Neq H;
simpl in *; try solve [inversion H; f_equal; eauto].
(* case (ty_bvar).*)
destruct (Nat.eqb j n)...
destruct (Nat.eqb i n)...
Admitted.
Lemma type_open_rec_lc : forall k σ τ,
type_lc τ ->
{ k ~> σ } τ = τ.
Proof.
intros.
generalize dependent k.
induction H.
- auto.
- auto.
- intro k.
unfold type_open in *.
(*
pick fresh x for L.
apply open_rec_lc_core with (i := S k) (j := 0) (u := u) (v := x). auto. auto.
*)
admit.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
Admitted.
Lemma type_subst_open_rec : forall τ1 τ2 σ x k,
type_lc σ ->
[x ~> σ] ({k ~> τ2} τ1) = {k ~> [x ~> σ] τ2} ([x ~> σ] τ1).
Proof.
intros.
induction τ1.
(* id *)
- auto.
(* free var *)
- simpl.
case_eq (eqb x s).
intro.
apply eq_sym.
apply type_open_rec_lc, H.
auto.
(* bound var *)
- simpl.
case_eq (Nat.eqb k n).
auto.
auto.
(* univ *)
- simpl.
admit.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
Admitted.