Compare commits

..

No commits in common. "44d8d401d83b524cfb7970bdd841df9c68fd5125" and "638ddf4fd1a3655264ded3852bf0074702af9e1b" have entirely different histories.

7 changed files with 77 additions and 499 deletions

View file

@ -69,7 +69,7 @@ Compute (expr_subst "x"
Example example_let_reduction :
e1 -->β (expr_app (expr_app (expr_var "+") bb_zero) bb_zero).
Proof.
apply E_Let.
apply E_AppLet.
Qed.
Compute (expr_app bb_succ bb_zero) -->β bb_one.

View file

@ -218,16 +218,6 @@ Inductive type_eq : type_term -> type_term -> Prop :=
y === z ->
x === z
| TEq_LadderAssocLR : forall x y z,
(type_ladder (type_ladder x y) z)
===
(type_ladder x (type_ladder y z))
| TEq_LadderAssocRL : forall x y z,
(type_ladder x (type_ladder y z))
===
(type_ladder (type_ladder x y) z)
| TEq_Alpha : forall x y,
x --->α y ->
x === y
@ -257,9 +247,6 @@ Proof.
apply TEq_Trans with (y:=y).
apply IHtype_eq2.
apply IHtype_eq1.
apply TEq_LadderAssocRL.
apply TEq_LadderAssocLR.
apply type_alpha_symm in H.
apply TEq_Alpha.

View file

@ -52,7 +52,7 @@ Inductive translate_morphism_path : context -> type_term -> type_term -> expr_te
(translate_morphism_path Γ τ τ' m) ->
(translate_morphism_path Γ (type_ladder σ τ) (type_ladder σ τ')
(expr_morph "x" (type_ladder σ τ)
(expr_ascend σ (expr_app m (expr_descend τ (expr_var "x"))))))
(expr_ascend (type_ladder σ τ') (expr_app m (expr_descend τ (expr_var "x"))))))
| Translate_Single : forall Γ h τ τ',
(context_contains Γ h (type_morph τ τ')) ->

View file

@ -61,8 +61,8 @@ Inductive beta_step : expr_term -> expr_term -> Prop :=
e -->β e' ->
(expr_ty_app e τ) -->β (expr_ty_app e' τ)
| E_TypAppLam : forall α e τ,
(expr_ty_app (expr_ty_abs α e) τ) -->β (expr_specialize α τ e)
| E_TypAppLam : forall x e a,
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
| E_AppLam : forall x τ e a,
(expr_app (expr_abs x τ e) a) -->β (expr_subst x a e)
@ -70,25 +70,8 @@ Inductive beta_step : expr_term -> expr_term -> Prop :=
| E_AppMorph : forall x τ e a,
(expr_app (expr_morph x τ e) a) -->β (expr_subst x a e)
| E_Let : forall x e a,
(expr_let x a e) -->β (expr_subst x a e)
| E_StripAscend : forall τ e,
(expr_ascend τ e) -->β e
| E_StripDescend : forall τ e,
(expr_descend τ e) -->β e
| E_Ascend : forall τ e e',
(e -->β e') ->
(expr_ascend τ e) -->β (expr_ascend τ e')
| E_AscendCollapse : forall τ' τ e,
(expr_ascend τ' (expr_ascend τ e)) -->β (expr_ascend (type_ladder τ' τ) e)
| E_DescendCollapse : forall τ' τ e,
(τ':<=τ) ->
(expr_descend τ (expr_descend τ' e)) -->β (expr_descend τ e)
| E_AppLet : forall x t e a,
(expr_let x t a e) -->β (expr_subst x a e)
where "s '-->β' t" := (beta_step s t).
@ -102,43 +85,4 @@ Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
Notation " s -->α* t " := (multi expr_alpha s t) (at level 40).
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
Example reduce1 :
[{
let "deg2turns" :=
(λ"x" $"Angle"$~$"Degrees"$~$""$
morph ((%"/"% (%"x"% des $""$) %"360"%) as $"Angle"$~$"Turns"$))
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
}]
-->β*
[{
((%"/"% %"60"%) %"360"%) as $"Angle"$~$"Turns"$
}].
Proof.
apply Multi_Step with (y:=[{ (λ"x" $"Angle"$~$"Degrees"$~$""$
morph (((%"/"% (%"x"% des $""$)) %"360"%) as $"Angle"$~$"Turns"$)) (%"60"% as $"Angle"$~$"Degrees"$) }]).
apply E_Let.
apply Multi_Step with (y:=(expr_subst "x" [{%"60"% as $"Angle"$~$"Degrees"$}] [{ (((%"/"% (%"x"% des $""$)) %"360"%) as $"Angle"$~$"Turns"$) }])).
apply E_AppMorph.
simpl.
apply Multi_Step with (y:=[{ ((%"/"% (%"60"% as $"Angle"$~$"Degrees"$)) %"360"%) as $"Angle"$~$"Turns"$ }]).
apply E_Ascend.
apply E_App1.
apply E_App2.
apply V_Abs, VAbs_Var.
apply E_StripDescend.
apply Multi_Step with (y:=[{ (%"/"% %"60"% %"360"%) as $"Angle"$~$"Turns"$ }]).
apply E_Ascend.
apply E_App1.
apply E_App2.
apply V_Abs, VAbs_Var.
apply E_StripAscend.
apply Multi_Refl.
Qed.
End Smallstep.

View file

@ -16,402 +16,40 @@ Include Typing.
Module Soundness.
Lemma typing_weakening : forall Γ e τ x σ,
(Γ |- e \is τ) ->
((ctx_assign x σ Γ) |- e \is τ)
.
Proof.
intros.
induction H.
apply T_Var.
apply C_shuffle.
apply H.
apply T_Let with (σ:=σ0).
apply IHexpr_type1.
admit.
Admitted.
Lemma morphism_path_solves_type : forall Γ τ τ' m,
(translate_morphism_path Γ τ τ' m) ->
Γ |- m \is (type_morph τ τ')
.
Proof.
intros.
induction H.
(* Sub *)
apply T_MorphAbs.
apply T_DescendImplicit with (τ:=τ).
apply T_Var.
apply C_take.
apply H.
(* Lift *)
apply T_MorphAbs.
apply T_Ascend.
apply T_App with (σ':=τ) (σ:=τ).
apply T_MorphFun.
apply typing_weakening.
apply IHtranslate_morphism_path.
apply T_Descend with (τ:=(type_ladder σ τ)).
apply T_Var.
apply C_take.
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* Single *)
apply T_Var.
apply H.
(* Chain *)
apply T_MorphAbs.
apply T_App with (σ':=τ') (σ:=τ') (τ:=τ'').
apply T_MorphFun.
apply typing_weakening.
apply IHtranslate_morphism_path2.
apply T_App with (σ':=τ) (σ:=τ) (τ:=τ').
apply T_MorphFun.
apply typing_weakening.
apply IHtranslate_morphism_path1.
apply T_Var.
apply C_take.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* Map Sequence *)
apply T_MorphAbs.
apply T_App with (σ':=(type_spec (type_id "Seq") τ)) (σ:=(type_spec (type_id "Seq") τ)).
apply T_App with (σ':=(type_fun τ τ')) (σ:=(type_fun τ τ')).
admit.
apply T_MorphFun.
apply typing_weakening.
apply IHtranslate_morphism_path.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
apply T_Var.
apply C_take.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
Admitted.
(* reduction step preserves well-typedness *)
Lemma preservation : forall Γ e e' τ,
~(is_value e) ->
(Γ |- e \is τ) ->
(e -->β e') ->
(Γ |- e' \is τ)
.
Proof.
intros.
induction e.
(* `e` is Variable *)
contradict H.
apply V_Abs, VAbs_Var.
(* `e` is Type-Abstraction *)
contradict H.
apply V_Abs, VAbs_TypAbs.
(* `e` is Type-Application *)
admit.
(* `e` is Abstraction *)
contradict H.
apply V_Abs, VAbs_Abs.
(* `e` is morphism *)
contradict H.
apply V_Abs, VAbs_Morph.
(* `e` is Application *)
admit.
(* `e` is Let-Binding *)
admit.
(* `e` is Ascension *)
admit.
(* `e` is Descension *)
admit.
Admitted.
(* translation of expression preserves typing *)
Lemma translation_preservation : forall Γ e e' τ,
(Γ |- e \is τ) ->
(translate_typing Γ e τ e') ->
(Γ |- e' \is τ)
.
Proof.
intros.
induction H0.
(* e is Variable *)
apply H.
(* e is Let-Binding *)
apply T_Let with (τ:=τ) (σ:=σ).
apply IHtranslate_typing1.
apply H0.
apply IHtranslate_typing2.
apply H1.
(* e is Type-Abstraction *)
apply T_TypeAbs.
apply IHtranslate_typing.
apply H0.
(* e is Type-Application *)
admit.
(* e is Abstraction *)
apply T_Abs.
apply IHtranslate_typing.
apply H0.
(* e is Morphism-Abstraction *)
apply T_MorphAbs.
apply IHtranslate_typing.
apply H0.
(* e is Application *)
apply T_App with (σ':=σ) (σ:=σ) (τ:=τ).
apply IHtranslate_typing1.
apply H0.
induction H3.
(* Repr-Subtype *)
apply T_App with (σ':=τ0) (σ:=τ0) (τ:=τ').
apply T_MorphFun.
apply T_MorphAbs.
apply T_DescendImplicit with (τ:=τ0).
apply T_Var.
apply C_take.
apply H3.
apply T_DescendImplicit with (τ:=τ0).
apply IHtranslate_typing2.
apply H1.
apply TSubRepr_Refl, TEq_Refl.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* Lifted Morphism *)
apply T_App with (σ':=(type_ladder σ τ0)) (σ:=(type_ladder σ τ0)) (τ:=(type_ladder σ τ')).
apply T_MorphFun.
apply T_MorphAbs.
apply T_Ascend with (τ:=τ').
apply T_App with (σ':=τ0) (σ:=τ0) (τ:=τ').
apply T_MorphFun.
apply typing_weakening.
apply morphism_path_solves_type.
apply H4.
apply T_Descend with (τ:=(type_ladder σ τ0)).
apply T_Var.
apply C_take.
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
apply IHtranslate_typing2.
apply H1.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* argument coecrion is single function variable *)
apply T_App with (σ':= τ0) (σ:=τ0).
apply T_MorphFun.
apply T_Var.
apply H3.
apply IHtranslate_typing2.
apply H1.
(* lemma: every context implies identity morphism *)
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* argument coecrion is chain of coercions *)
apply T_App with (σ':=τ0) (σ:=τ0).
apply T_MorphFun.
apply T_MorphAbs.
apply T_App with (σ':=τ') (σ:=τ').
apply T_MorphFun.
apply typing_weakening.
apply morphism_path_solves_type.
apply H3_0.
apply T_App with (σ':=τ0) (σ:=τ0).
apply T_MorphFun.
apply typing_weakening.
apply morphism_path_solves_type.
apply H3_.
apply T_Var.
apply C_take.
(* lemma: every context implies identity morphism *)
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* lemma: every context implies identity morphism *)
apply M_Sub, TSubRepr_Refl, TEq_Refl.
apply IHtranslate_typing2.
apply H1.
(* lemma: every context implies identity morphism *)
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* argument coercion is is map *)
(*
apply T_App with (σ':=(type_spec (type_id "Seq") τ0)) (σ:=(type_spec (type_id "Seq") τ0)).
apply T_MorphFun.
apply T_MorphAbs.
apply T_App with (σ':=(type_spec (type_id "Seq") τ0)) (σ:=(type_spec (type_id "Seq") τ0)).
apply T_App with (σ':=(type_fun τ0 τ')) (σ:=(type_fun τ0 τ')).
apply T_TypeApp with
(α:="T2"%string)
(e:=(expr_ty_app (expr_var "map") τ0))
(τ:=(type_fun
(type_fun τ0 τ')
(type_fun
(type_spec (type_id "Seq") τ0)
(type_spec (type_id "Seq") τ')))).
apply T_TypeApp with
(α:="T1"%string)
(e:=(expr_var "map"))
(τ:=(type_univ "T2"
(type_fun
(type_fun τ0 τ')
(type_fun
(type_spec (type_id "Seq") (type_var "T1"))
(type_spec (type_id "Seq") (type_var "T2")))))).
apply T_Var.
admit.
apply TSubst_VarReplace.
apply TSubst_UnivReplace.
*)
admit.
(* argument coercion *)
apply M_Sub, TSubRepr_Refl, TEq_Refl.
(* end case `e application` *)
(* e is Morphism *)
apply T_MorphFun.
apply IHtranslate_typing.
apply H0.
(* e is Ascension *)
apply T_Ascend.
apply IHtranslate_typing.
apply H0.
(* e is Desecension *)
apply T_DescendImplicit with (τ:=τ).
apply IHtranslate_typing.
apply H0.
apply H1.
Admitted.
(* e is stuck when it is neither a value, nor can it be reduced *)
Definition is_stuck (e:expr_term) : Prop :=
~(is_value e) ->
~(exists e', e -->β e')
.
(* the translation any well typed term is not stuck *)
(* every well typed term is not stuck *)
Lemma progress :
forall Γ e τ e',
forall (e:expr_term),
(is_well_typed e) -> ~(is_stuck e)
.
Proof.
Admitted.
(* reduction step preserves well-typedness *)
Lemma preservation :
forall Γ e e' τ,
(Γ |- e \is τ) ->
(translate_typing Γ e τ e') ->
~(is_stuck e')
(e -->β e') ->
(Γ |- e' \is τ)
.
Proof.
Admitted.
(* every well-typed expression is translated,
* such that it be reduced to a value
*)
(* every well-typed expression can be reduced to a value *)
Theorem soundness :
forall Γ e e' τ,
(Γ |- e \is τ) ->
(translate_typing Γ e τ e') ->
(exists v, (e' -->β* v) /\ (is_value v) /\ (Γ |- v \is τ))
forall (e:expr_term),
(is_well_typed e) ->
(exists e', e -->β* e' /\ (is_value e'))
.
Proof.
intros.
(* `e` is Variable *)
induction H0.
exists (expr_var x).
split. apply Multi_Refl.
split. apply V_Abs,VAbs_Var.
apply H.
(* `e` is Let-Binding *)
exists (expr_subst x e' t').
split.
apply Multi_Step with (y:=(expr_subst x e' t')).
apply E_Let with (x:=x) (a:=e') (e:=t').
apply Multi_Refl.
(*
split.
unfold expr_subst.
induction t'.
exists (expr_subst x e' (expr_var s)).
split.
unfold expr_subst.
apply E_Let.
*)
admit.
(* `e` is Type-Abstraction *)
exists (expr_ty_abs α e').
split.
apply Multi_Refl.
split.
apply V_Abs, VAbs_TypAbs.
apply T_TypeAbs.
apply translation_preservation with (e:=e).
apply H0.
apply H1.
(* `e` is Type-Application *)
admit.
(* `e`is Abstraction *)
exists (expr_abs x σ e').
split. apply Multi_Refl.
split. apply V_Abs, VAbs_Abs.
apply T_Abs.
apply translation_preservation with (e:=e).
apply H0.
apply H2.
(* `e` is Morphism Abstraction *)
exists (expr_morph x σ e').
split. apply Multi_Refl.
split. apply V_Abs, VAbs_Morph.
apply T_MorphAbs.
apply translation_preservation with (e:=e).
apply H0.
apply H2.
(* `e` is Application *)
admit.
admit.
(* `e` is Ascension *)
admit.
(* `e` is Descension *)
admit.
Admitted.
End Soundness.

View file

@ -30,35 +30,46 @@ Inductive expr_term : Type :=
| expr_descend : type_term -> expr_term -> expr_term
.
(* values *)
Inductive is_abs_value : expr_term -> Prop :=
| VAbs_Var : forall x,
(is_abs_value (expr_var x))
(* TODO
| VAbs_Abs : forall x τ e,
(is_abs_value (expr_abs x τ e))
Inductive type_DeBruijn : Type :=
| id : nat -> type_DeBruijn
| var : nat -> type_DeBruijn
| fun : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| univ : type_DeBruijn -> type_DeBruijn
| spec : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| morph : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ladder : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| VAbs_Morph : forall x τ e,
(is_abs_value (expr_morph x τ e))
| VAbs_TypAbs : forall τ e,
(is_abs_value (expr_ty_abs τ e))
Inductive expr_DeBruijn : Type :=
| var : nat -> expr_DeBruijn
| ty_abs : expr_DeBruijn -> expr_DeBruijn
| ty_app : expr_DeBruijn -> type_DeBruijn -> expr_Debruijn
| abs : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| morph : type_DeBruijn -> expr_DeBruijn -> expr_Debruijn
| app : expr_DeBruijn -> expr_DeBruijn -> expr_Debruijn
| let : type_DeBruijn -> expr_DeBruijn -> expr_Debruijn -> expr_Debruijn
| ascend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| descend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
.
*)
(* values *)
Inductive is_value : expr_term -> Prop :=
| V_Abs : forall e,
(is_abs_value e) ->
(is_value e)
| V_Abs : forall x τ e,
(is_value (expr_abs x τ e))
| V_TypAbs : forall τ e,
(is_value (expr_ty_abs τ e))
| V_Ascend : forall τ e,
(is_abs_value e) ->
(is_value e) ->
(is_value (expr_ascend τ e))
| V_Descend : forall τ e,
(is_abs_value e) ->
(is_value (expr_descend τ e))
.
Declare Scope ladder_type_scope.
Declare Scope ladder_expr_scope.
Declare Custom Entry ladder_type.
@ -97,8 +108,6 @@ Notation "'let' x ':=' e 'in' t" := (expr_let x e t)
(in custom ladder_expr at level 20, x constr, e custom ladder_expr at level 99, t custom ladder_expr at level 99) : ladder_expr_scope.
Notation "e 'as' τ" := (expr_ascend τ e)
(in custom ladder_expr at level 30, e custom ladder_expr, τ custom ladder_type at level 99) : ladder_expr_scope.
Notation "e 'des' τ" := (expr_descend τ e)
(in custom ladder_expr at level 30, e custom ladder_expr, τ custom ladder_type at level 99) : ladder_expr_scope.
Notation "e1 e2" := (expr_app e1 e2)
(in custom ladder_expr at level 50) : ladder_expr_scope.
Notation "'(' e ')'" := e

View file

@ -61,7 +61,8 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
| T_Ascend : forall Γ e τ τ',
(Γ |- e \is τ) ->
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ))
(τ' :<= τ) ->
(Γ |- (expr_ascend τ' e) \is τ')
| T_DescendImplicit : forall Γ x τ τ',
Γ |- x \is τ ->
@ -76,8 +77,7 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
Definition is_well_typed (e:expr_term) : Prop :=
forall Γ,
exists τ,
exists Γ τ,
Γ |- e \is τ
.
@ -135,9 +135,10 @@ Inductive translate_typing : context -> expr_term -> type_term -> expr_term -> P
| Expand_Ascend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ)) ->
(τ' :<= τ) ->
(Γ |- (expr_ascend τ' e) \is τ') ->
(translate_typing Γ e τ e') ->
(translate_typing Γ (expr_ascend τ' e) (type_ladder τ' τ) (expr_ascend τ' e'))
(translate_typing Γ (expr_ascend τ' e) τ' (expr_ascend τ' e'))
| Expand_Descend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
@ -218,6 +219,7 @@ Example typing4 : (is_well_typed
).
Proof.
unfold is_well_typed.
exists ctx_empty.
exists [< "T","U",%"T"%->%"U"%->%"T"% >].
apply T_TypeAbs.
apply T_TypeAbs.
@ -229,29 +231,24 @@ Qed.
Open Scope ladder_expr_scope.
Example typing5 :
(ctx_assign "60" [< $""$ >]
(ctx_assign "360" [< $""$ >]
(ctx_assign "/" [< $""$ -> $""$ -> $""$ >]
ctx_empty)))
|-
Example typing5 : (is_well_typed
[{
let "deg2turns" :=
(λ"x" $"Angle"$~$"Degrees"$~$""$
morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$))
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$~$""$))
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$~$""$) )
}]
\is
[<
$"Angle"$~$"Turns"$~$""$
>]
.
).
Proof.
unfold is_well_typed.
exists (ctx_assign "60" [< $""$ >]
(ctx_assign "360" [< $""$ >]
(ctx_assign "/" [< $""$ -> $""$ -> $""$ >]
ctx_empty))).
exists [< $"Angle"$~$"Turns"$~$""$ >].
apply T_Let with (σ:=[< $"Angle"$~$"Degrees"$~$""$ ->morph $"Angle"$~$"Turns"$~$""$ >]).
apply T_MorphAbs.
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Turns"$>] [<$""$>])).
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
apply T_Ascend with (τ:=[<$""$>]) (τ':=[<$"Angle"$~$"Turns"$>]).
apply T_Ascend with (τ:=[< $""$ >]).
apply T_App with (σ := [< $""$ >]) (σ' := [< $""$ >]).
apply T_App with (σ := [< $""$ >]) (σ' := [< $""$ >]).
apply T_Var.
@ -268,15 +265,18 @@ Proof.
apply M_Sub.
apply TSubRepr_Refl.
apply TEq_Refl.
apply TSubRepr_Ladder, TSubRepr_Ladder, TSubRepr_Refl.
apply TEq_Refl.
apply T_App with (σ:=[<$"Angle"$~$"Degrees"$~$""$>]) (σ':=[<$"Angle"$~$"Degrees"$~$""$>]).
apply T_MorphFun.
apply T_Var.
apply C_take.
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Degrees"$>] [<$""$>])).
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
apply T_Ascend.
apply T_Ascend with (τ:=[<$""$>]).
apply T_Var.
apply C_shuffle. apply C_take.
apply TSubRepr_Ladder.
apply TSubRepr_Ladder.
apply TSubRepr_Refl. apply TEq_Refl.
apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl.
Qed.