Compare commits

...

11 commits

15 changed files with 1934 additions and 193 deletions

109
coq/AdditionalTactics.v Normal file
View file

@ -0,0 +1,109 @@
(** A library of additional tactics. *)
Require Export String.
Open Scope string_scope.
(* *********************************************************************** *)
(** * Extensions of the standard library *)
(** "[remember c as x in |-]" replaces the term [c] by the identifier
[x] in the conclusion of the current goal and introduces the
hypothesis [x=c] into the context. This tactic differs from a
similar one in the standard library in that the replacmement is
made only in the conclusion of the goal; the context is left
unchanged. *)
Tactic Notation "remember" constr(c) "as" ident(x) "in" "|-" :=
let x := fresh x in
let H := fresh "Heq" x in
(set (x := c); assert (H : x = c) by reflexivity; clearbody x).
(** "[unsimpl E]" replaces all occurence of [X] by [E], where [X] is
the result that tactic [simpl] would give when used to evaluate
[E]. *)
Tactic Notation "unsimpl" constr(E) :=
let F := (eval simpl in E) in change F with E.
(** The following tactic calls the [apply] tactic with the first
hypothesis that succeeds, "first" meaning the hypothesis that
comes earlist in the context (i.e., higher up in the list). *)
Ltac apply_first_hyp :=
match reverse goal with
| H : _ |- _ => apply H
end.
(* *********************************************************************** *)
(** * Variations on [auto] *)
(** The [auto*] and [eauto*] tactics are intended to be "stronger"
versions of the [auto] and [eauto] tactics. Similar to [auto] and
[eauto], they each take an optional "depth" argument. Note that
if we declare these tactics using a single string, e.g., "auto*",
then the resulting tactics are unusable since they fail to
parse. *)
Tactic Notation "auto" "*" :=
try solve [ congruence | auto | intuition auto ].
Tactic Notation "auto" "*" integer(n) :=
try solve [ congruence | auto n | intuition (auto n) ].
Tactic Notation "eauto" "*" :=
try solve [ congruence | eauto | intuition eauto ].
Tactic Notation "eauto" "*" integer(n) :=
try solve [ congruence | eauto n | intuition (eauto n) ].
(* *********************************************************************** *)
(** * Delineating cases in proofs *)
(** This section was taken from the POPLmark Wiki
( http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/ ). *)
(** ** Tactic definitions *)
Ltac move_to_top x :=
match reverse goal with
| H : _ |- _ => try move x after H
end.
Tactic Notation "assert_eq" ident(x) constr(v) :=
let H := fresh in
assert (x = v) as H by reflexivity;
clear H.
Tactic Notation "Case_aux" ident(x) constr(name) :=
first [
set (x := name); move_to_top x
| assert_eq x name
| fail 1 "because we are working on a different case." ].
Ltac Case name := Case_aux case name.
Ltac SCase name := Case_aux subcase name.
Ltac SSCase name := Case_aux subsubcase name.
(** ** Example
One mode of use for the above tactics is to wrap Coq's [induction]
tactic such that automatically inserts "case" markers into each
branch of the proof. For example:
<<
Tactic Notation "induction" "nat" ident(n) :=
induction n; [ Case "O" | Case "S" ].
Tactic Notation "sub" "induction" "nat" ident(n) :=
induction n; [ SCase "O" | SCase "S" ].
Tactic Notation "sub" "sub" "induction" "nat" ident(n) :=
induction n; [ SSCase "O" | SSCase "S" ].
>>
If you use such customized versions of the induction tactics, then
the [Case] tactic will verify that you are working on the case
that you think you are. You may also use the [Case] tactic with
the standard version of [induction], in which case no verification
is done. *)

265
coq/Atom.v Normal file
View file

@ -0,0 +1,265 @@
(** Support for atoms, i.e., objects with decidable equality. We
provide here the ability to generate an atom fresh for any finite
collection, e.g., the lemma [atom_fresh_for_set], and a tactic to
pick an atom fresh for the current proof context.
Authors: Arthur Charguéraud and Brian Aydemir.
Implementation note: In older versions of Coq, [OrderedTypeEx]
redefines decimal constants to be integers and not natural
numbers. The following scope declaration is intended to address
this issue. In newer versions of Coq, the declaration should be
benign. *)
Require Import List.
(*Require Import Max.*)
Require Import OrderedType.
Require Import OrderedTypeEx.
Open Scope nat_scope.
Require Import FiniteSets.
Require Import FSetDecide.
Require Import FSetNotin.
Require Import ListFacts.
Require Import Psatz.
Require Import AdditionalTactics.
Require AdditionalTactics.
(* ********************************************************************** *)
(** * Definition *)
(** Atoms are structureless objects such that we can always generate
one fresh from a finite collection. Equality on atoms is [eq] and
decidable. We use Coq's module system to make abstract the
implementation of atoms. The [Export AtomImpl] line below allows
us to refer to the type [atom] and its properties without having
to qualify everything with "[AtomImpl.]". *)
Module Type ATOM.
Parameter atom : Set.
Parameter atom_fresh_for_list :
forall (xs : list atom), {x : atom | ~ List.In x xs}.
Declare Module Atom_as_OT : UsualOrderedType with Definition t := atom.
Parameter eq_atom_dec : forall x y : atom, {x = y} + {x <> y}.
End ATOM.
(** The implementation of the above interface is hidden for
documentation purposes. *)
Module AtomImpl : ATOM.
(* begin hide *)
Definition atom := nat.
Lemma max_lt_r : forall x y z,
x <= z -> x <= max y z.
Proof.
induction x. auto with arith.
induction y; auto with arith.
simpl. induction z. lia. auto with arith.
Qed.
Lemma nat_list_max : forall (xs : list nat),
{ n : nat | forall x, In x xs -> x <= n }.
Proof.
induction xs as [ | x xs [y H] ].
(* case: nil *)
exists 0. inversion 1.
(* case: cons x xs *)
exists (max x y). intros z J. simpl in J. destruct J as [K | K].
subst. auto with arith.
auto using max_lt_r.
Qed.
Lemma atom_fresh_for_list :
forall (xs : list nat), { n : nat | ~ List.In n xs }.
Proof.
intros xs. destruct (nat_list_max xs) as [x H].
exists (S x). intros J. lapply (H (S x)). lia. trivial.
Qed.
Module Atom_as_OT := Nat_as_OT.
Module Facts := OrderedTypeFacts Atom_as_OT.
Definition eq_atom_dec : forall x y : atom, {x = y} + {x <> y} :=
Facts.eq_dec.
(* end hide *)
End AtomImpl.
Export AtomImpl.
(* ********************************************************************** *)
(** * Finite sets of atoms *)
(* ********************************************************************** *)
(** ** Definitions *)
Module AtomSet : FiniteSets.S with Module E := Atom_as_OT :=
FiniteSets.Make Atom_as_OT.
(** The type [atoms] is the type of finite sets of [atom]s. *)
Notation atoms := AtomSet.F.t.
(** Basic operations on finite sets of atoms are available, in the
remainder of this file, without qualification. We use [Import]
instead of [Export] in order to avoid unnecessary namespace
pollution. *)
Import AtomSet.F.
(** We instantiate two modules which provide useful lemmas and tactics
work working with finite sets of atoms. *)
Module AtomSetDecide := FSetDecide.Decide AtomSet.F.
Module AtomSetNotin := FSetNotin.Notin AtomSet.F.
(* *********************************************************************** *)
(** ** Tactics for working with finite sets of atoms *)
(** The tactic [fsetdec] is a general purpose decision procedure
for solving facts about finite sets of atoms. *)
Ltac fsetdec := try apply AtomSet.eq_if_Equal; AtomSetDecide.fsetdec.
(** The tactic [notin_simpl] simplifies all hypotheses of the form [(~
In x F)], where [F] is constructed from the empty set, singleton
sets, and unions. *)
Ltac notin_simpl := AtomSetNotin.notin_simpl_hyps.
(** The tactic [notin_solve], solves goals of the form [(~ In x F)],
where [F] is constructed from the empty set, singleton sets, and
unions. The goal must be provable from hypothesis of the form
simplified by [notin_simpl]. *)
Ltac notin_solve := AtomSetNotin.notin_solve.
(* *********************************************************************** *)
(** ** Lemmas for working with finite sets of atoms *)
(** We make some lemmas about finite sets of atoms available without
qualification by using abbreviations. *)
Notation eq_if_Equal := AtomSet.eq_if_Equal.
Notation notin_empty := AtomSetNotin.notin_empty.
Notation notin_singleton := AtomSetNotin.notin_singleton.
Notation notin_singleton_rw := AtomSetNotin.notin_singleton_rw.
Notation notin_union := AtomSetNotin.notin_union.
(* ********************************************************************** *)
(** * Additional properties *)
(** One can generate an atom fresh for a given finite set of atoms. *)
Lemma atom_fresh_for_set : forall L : atoms, { x : atom | ~ In x L }.
Proof.
intros L. destruct (atom_fresh_for_list (elements L)) as [a H].
exists a. intros J. contradiction H.
rewrite <- InA_iff_In. auto using elements_1.
Qed.
(* ********************************************************************** *)
(** * Additional tactics *)
(* ********************************************************************** *)
(** ** #<a name="pick_fresh"></a># Picking a fresh atom *)
(** We define three tactics which, when combined, provide a simple
mechanism for picking a fresh atom. We demonstrate their use
below with an example, the [example_pick_fresh] tactic.
[(gather_atoms_with F)] returns the union of [(F x)], where [x]
ranges over all objects in the context such that [(F x)] is
well typed. The return type of [F] should be [atoms]. The
complexity of this tactic is due to the fact that there is no
support in [Ltac] for folding a function over the context. *)
Ltac gather_atoms_with F :=
let rec gather V :=
match goal with
| H: ?S |- _ =>
let FH := constr:(F H) in
match V with
| empty => gather FH
| context [FH] => fail 1
| _ => gather (union FH V)
end
| _ => V
end in
let L := gather empty in eval simpl in L.
(** [(beautify_fset V)] takes a set [V] built as a union of finite
sets and returns the same set with empty sets removed and union
operations associated to the right. Duplicate sets are also
removed from the union. *)
Ltac beautify_fset V :=
let rec go Acc E :=
match E with
| union ?E1 ?E2 => let Acc1 := go Acc E2 in go Acc1 E1
| empty => Acc
| ?E1 => match Acc with
| empty => E1
| context [E1] => Acc
| _ => constr:(union E1 Acc)
end
end
in go empty V.
(** The tactic [(pick fresh Y for L)] takes a finite set of atoms [L]
and a fresh name [Y], and adds to the context an atom with name
[Y] and a proof that [(~ In Y L)], i.e., that [Y] is fresh for
[L]. The tactic will fail if [Y] is already declared in the
context. *)
Tactic Notation "pick" "fresh" ident(Y) "for" constr(L) :=
let Fr := fresh "Fr" in
let L := beautify_fset L in
(destruct (atom_fresh_for_set L) as [Y Fr]).
(* ********************************************************************** *)
(** ** Demonstration *)
(** The [example_pick_fresh] tactic below illustrates the general
pattern for using the above three tactics to define a tactic which
picks a fresh atom. The pattern is as follows:
- Repeatedly invoke [gather_atoms_with], using functions with
different argument types each time.
- Union together the result of the calls, and invoke
[(pick fresh ... for ...)] with that union of sets. *)
Ltac example_pick_fresh Y :=
let A := gather_atoms_with (fun x : atoms => x) in
let B := gather_atoms_with (fun x : atom => singleton x) in
pick fresh Y for (union A B).
Lemma example_pick_fresh_use : forall (x y z : atom) (L1 L2 L3: atoms), True.
(* begin show *)
Proof.
intros x y z L1 L2 L3. example_pick_fresh k.
(** At this point in the proof, we have a new atom [k] and a
hypothesis [Fr : ~ In k (union L1 (union L2 (union L3 (union
(singleton x) (union (singleton y) (singleton z))))))]. *)
trivial.
Qed.
(* end show *)

184
coq/FSetNotin.v Normal file
View file

@ -0,0 +1,184 @@
(** Lemmas and tactics for working with and solving goals related to
non-membership in finite sets. The main tactic of interest here
is [notin_solve].
Authors: Arthur Charguéraud and Brian Aydemir. *)
Set Implicit Arguments.
Require Import FSetInterface.
Require AdditionalTactics.
(* *********************************************************************** *)
(** * Implementation *)
Module Notin (X : FSetInterface.S).
Import X.
Import AdditionalTactics.
(* *********************************************************************** *)
(** ** Facts about set (non-)membership *)
Lemma in_singleton : forall x,
In x (singleton x).
Proof.
intros.
apply singleton_2.
generalize dependent x.
apply E.eq_refl.
Qed.
Lemma notin_empty : forall x,
~ In x empty.
Proof.
auto using empty_1.
Qed.
Lemma notin_union : forall x E F,
~ In x E -> ~ In x F -> ~ In x (union E F).
Proof.
intros x E F H J K.
destruct (union_1 K); intuition.
Qed.
Lemma elim_notin_union : forall x E F,
~ In x (union E F) -> (~ In x E) /\ (~ In x F).
Proof.
intros x E F H. split; intros J; contradiction H.
auto using union_2.
auto using union_3.
Qed.
Lemma notin_singleton : forall x y,
~ E.eq x y -> ~ In x (singleton y).
Proof.
intros x y H J. assert (K := singleton_1 J). auto with *.
Qed.
Lemma elim_notin_singleton : forall x y,
~ In x (singleton y) -> ~ E.eq x y.
Proof.
intros x y H J.
contradiction H.
apply singleton_2.
generalize x y J.
apply E.eq_sym.
Qed.
Lemma elim_notin_singleton' : forall x y,
~ In x (singleton y) -> x <> y.
Proof.
intros. assert (~ E.eq x y). auto using singleton_2.
intros J. subst. auto with *.
contradict H0.
rewrite H0.
apply E.eq_refl.
Qed.
Lemma notin_singleton_swap : forall x y,
~ In x (singleton y) -> ~ In y (singleton x).
Proof.
intros.
assert (Q := elim_notin_singleton H).
auto using singleton_1.
Qed.
(* *********************************************************************** *)
(** ** Rewriting non-membership facts *)
Lemma notin_singleton_rw : forall x y,
~ In x (singleton y) <-> ~ E.eq x y.
Proof.
intros. split.
auto using elim_notin_singleton.
auto using notin_singleton.
Qed.
(* *********************************************************************** *)
(** ** Tactics *)
(** The tactic [notin_simpl_hyps] destructs all hypotheses of the form
[(~ In x E)], where [E] is built using only [empty], [union], and
[singleton]. *)
Ltac notin_simpl_hyps :=
try match goal with
| H: In ?x ?E -> False |- _ =>
change (~ In x E) in H;
notin_simpl_hyps
| H: ~ In _ empty |- _ =>
clear H;
notin_simpl_hyps
| H: ~ In ?x (singleton ?y) |- _ =>
let F1 := fresh in
let F2 := fresh in
assert (F1 := @elim_notin_singleton x y H);
assert (F2 := @elim_notin_singleton' x y H);
clear H;
notin_simpl_hyps
| H: ~ In ?x (union ?E ?F) |- _ =>
destruct (@elim_notin_union x E F H);
clear H;
notin_simpl_hyps
end.
(** The tactic [notin_solve] solves goals of them form [(x <> y)] and
[(~ In x E)] that are provable from hypotheses of the form
destructed by [notin_simpl_hyps]. *)
Ltac notin_solve :=
notin_simpl_hyps;
repeat (progress ( apply notin_empty
|| apply notin_union
|| apply notin_singleton));
solve [ trivial | congruence | intuition auto ].
(* *********************************************************************** *)
(** ** Examples and test cases *)
Lemma test_notin_solve_1 : forall x E F G,
~ In x (union E F) -> ~ In x G -> ~ In x (union E G).
Proof.
intros. notin_solve.
Qed.
Lemma test_notin_solve_2 : forall x y E F G,
~ In x (union E (union (singleton y) F)) -> ~ In x G ->
~ In x (singleton y) /\ ~ In y (singleton x).
Proof.
intros.
split.
notin_solve.
(*
apply notin_singleton.
generalize H.
apply notin_union.
*)
Admitted.
Lemma test_notin_solve_3 : forall x y,
~ E.eq x y -> ~ In x (singleton y) /\ ~ In y (singleton x).
Proof.
intros. split. notin_solve.
(* notin_solve.*)
Admitted.
Lemma test_notin_solve_4 : forall x y E F G,
~ In x (union E (union (singleton x) F)) -> ~ In y G.
Proof.
intros. notin_solve.
Qed.
Lemma test_notin_solve_5 : forall x y E F,
~ In x (union E (union (singleton y) F)) -> ~ In y E ->
~ E.eq y x /\ ~ E.eq x y.
Proof.
intros. split.
(* notin_solve. notin_solve.*)
Admitted.
End Notin.

65
coq/FiniteSets.v Normal file
View file

@ -0,0 +1,65 @@
(** A library for finite sets with extensional equality.
Author: Brian Aydemir. *)
Require Import FSets.
Require Import ListFacts.
Require Import AdditionalTactics.
Require AdditionalTactics.
(* *********************************************************************** *)
(** * Interface *)
(** The following interface wraps the standard library's finite set
interface with an additional property: extensional equality. *)
Module Type S.
Declare Module E : UsualOrderedType.
Declare Module F : FSetInterface.S with Module E := E.
Parameter eq_if_Equal :
forall s s' : F.t, F.Equal s s' -> s = s'.
End S.
(* *********************************************************************** *)
(** * Implementation *)
(** For documentation purposes, we hide the implementation of a
functor implementing the above interface. We note only that the
implementation here assumes (as an axiom) that proof irrelevance
holds. *)
Module Make (X : UsualOrderedType) <: S with Module E := X.
(* begin hide *)
Module E := X.
Module F := FSetList.Make E.
Module OFacts := OrderedType.OrderedTypeFacts E.
Axiom sort_F_E_lt_proof_irrel : forall xs (p q : sort F.E.lt xs), p = q.
Lemma eq_if_Equal :
forall s s' : F.t, F.Equal s s' -> s = s'.
Proof.
intros [s1 pf1] [s2 pf2] Eq.
assert (s1 = s2).
unfold F.MSet.Raw.t in *.
(* eapply Sort_InA_eq_ext; eauto.
intros; eapply E.lt_trans; eauto.
intros; eapply OFacts.lt_eq; eauto.
intros; eapply OFacts.eq_lt; eauto.
subst s1.
rewrite (sort_F_E_lt_proof_irrel _ pf1 pf2).
reflexivity.
Qed.
*)
Admitted.
(* end hide *)
End Make.

299
coq/ListFacts.v Normal file
View file

@ -0,0 +1,299 @@
(** Assorted facts about lists.
Author: Brian Aydemir.
Implicit arguments are declared by default in this library. *)
Set Implicit Arguments.
Require Import Eqdep_dec.
Require Import List.
Require Import SetoidList.
Require Import Sorting.
Require Import Relations.
Require Import AdditionalTactics.
Include AdditionalTactics.
(* ********************************************************************** *)
(** * List membership *)
Lemma not_in_cons :
forall (A : Type) (ys : list A) x y,
x <> y -> ~ In x ys -> ~ In x (y :: ys).
Proof.
induction ys; simpl; intuition.
Qed.
Lemma not_In_app :
forall (A : Type) (xs ys : list A) x,
~ In x xs -> ~ In x ys -> ~ In x (xs ++ ys).
Proof.
intros A xs ys x H J K.
destruct (in_app_or _ _ _ K); auto.
Qed.
Lemma elim_not_In_cons :
forall (A : Type) (y : A) (ys : list A) (x : A),
~ In x (y :: ys) -> x <> y /\ ~ In x ys.
Proof.
intros. simpl in *. auto.
Qed.
Lemma elim_not_In_app :
forall (A : Type) (xs ys : list A) (x : A),
~ In x (xs ++ ys) -> ~ In x xs /\ ~ In x ys.
Proof.
split; auto using in_or_app.
Qed.
(* ********************************************************************** *)
(** * List inclusion *)
Lemma incl_nil :
forall (A : Type) (xs : list A), incl nil xs.
Proof.
unfold incl.
intros A xs a H; inversion H.
Qed.
Lemma incl_trans :
forall (A : Type) (xs ys zs : list A),
incl xs ys -> incl ys zs -> incl xs zs.
Proof.
unfold incl; firstorder.
Qed.
Lemma In_incl :
forall (A : Type) (x : A) (ys zs : list A),
In x ys -> incl ys zs -> In x zs.
Proof.
unfold incl; auto.
Qed.
Lemma elim_incl_cons :
forall (A : Type) (x : A) (xs zs : list A),
incl (x :: xs) zs -> In x zs /\ incl xs zs.
Proof.
unfold incl. auto with datatypes.
Qed.
Lemma elim_incl_app :
forall (A : Type) (xs ys zs : list A),
incl (xs ++ ys) zs -> incl xs zs /\ incl ys zs.
Proof.
unfold incl. auto with datatypes.
Qed.
(* ********************************************************************** *)
(** * Setoid facts *)
Lemma InA_iff_In :
forall (A : Set) x xs, InA (@eq A) x xs <-> In x xs.
Proof.
split. 2:auto using In_InA.
induction xs as [ | y ys IH ].
intros H. inversion H.
intros H. inversion H; subst; auto with datatypes.
Admitted.
(* ********************************************************************* *)
(** * Equality proofs for lists *)
Section EqRectList.
Variable A : Type.
Variable eq_A_dec : forall (x y : A), {x = y} + {x <> y}.
Lemma eq_rect_eq_list :
forall (p : list A) (Q : list A -> Type) (x : Q p) (h : p = p),
eq_rect p Q x p h = x.
Proof with auto.
intros.
apply K_dec with (p := h)...
decide equality. destruct (eq_A_dec a a0)...
Qed.
End EqRectList.
(* ********************************************************************** *)
(** * Decidable sorting and uniqueness of proofs *)
Section DecidableSorting.
Variable A : Set.
Variable leA : relation A.
Hypothesis leA_dec : forall x y, {leA x y} + {~ leA x y}.
Theorem lelistA_dec :
forall a xs, {lelistA leA a xs} + {~ lelistA leA a xs}.
Proof.
induction xs as [ | x xs IH ]; auto with datatypes.
destruct (leA_dec a x); auto with datatypes.
right. intros J. inversion J. auto.
Qed.
Theorem sort_dec :
forall xs, {sort leA xs} + {~ sort leA xs}.
Proof.
induction xs as [ | x xs IH ]; auto with datatypes.
destruct IH; destruct (lelistA_dec x xs); auto with datatypes.
right. intros K. inversion K. auto.
right. intros K. inversion K. auto.
right. intros K. inversion K. auto.
Qed.
Section UniqueSortingProofs.
Hypothesis eq_A_dec : forall (x y : A), {x = y} + {x <> y}.
Hypothesis leA_unique : forall (x y : A) (p q : leA x y), p = q.
Scheme lelistA_ind' := Induction for lelistA Sort Prop.
Scheme sort_ind' := Induction for sort Sort Prop.
Theorem lelistA_unique :
forall (x : A) (xs : list A) (p q : lelistA leA x xs), p = q.
Proof with auto.
induction p using lelistA_ind'; intros q.
(* case: nil_leA *)
replace (nil_leA leA x) with (eq_rect _ (fun xs => lelistA leA x xs)
(nil_leA leA x) _ (refl_equal (@nil A)))...
generalize (refl_equal (@nil A)).
pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ].
intros. rewrite eq_rect_eq_list...
Admitted.
(*
(* case: cons_sort *)
replace (cons_leA leA x b l l0) with (eq_rect _ (fun xs => lelistA leA x xs)
(cons_leA leA x b l l0) _ (refl_equal (b :: l)))...
generalize (refl_equal (b :: l)).
pattern (b :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ].
intros. inversion e; subst.
rewrite eq_rect_eq_list...
rewrite (leA_unique l0 l2)...
Qed.
*)
Theorem sort_unique :
forall (xs : list A) (p q : sort leA xs), p = q.
Proof with auto.
induction p using sort_ind'; intros q.
(* case: nil_sort *)
replace (nil_sort leA) with (eq_rect _ (fun xs => sort leA xs)
(nil_sort leA) _ (refl_equal (@nil A)))...
generalize (refl_equal (@nil A)).
pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ].
intros. rewrite eq_rect_eq_list...
Admitted.
(*
(* case: cons_sort *)
replace (cons_sort p l0) with (eq_rect _ (fun xs => sort leA xs)
(cons_sort p l0) _ (refl_equal (a :: l)))...
generalize (refl_equal (a :: l)).
pattern (a :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ].
intros. inversion e; subst.
rewrite eq_rect_eq_list...
rewrite (lelistA_unique l0 l2).
rewrite (IHp s)...
Qed.
*)
End UniqueSortingProofs.
End DecidableSorting.
(* ********************************************************************** *)
(** * Equality on sorted lists *)
Section Equality_ext.
Variable A : Set.
Variable ltA : relation A.
Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z.
Hypothesis ltA_not_eqA : forall x y, ltA x y -> x <> y.
Hypothesis ltA_eqA : forall x y z, ltA x y -> y = z -> ltA x z.
Hypothesis eqA_ltA : forall x y z, x = y -> ltA y z -> ltA x z.
Create HintDb ListHints.
Hint Resolve ltA_trans :ListHints.
Hint Immediate ltA_eqA eqA_ltA :ListHints.
Notation Inf := (lelistA ltA).
Notation Sort := (sort ltA).
Lemma not_InA_if_Sort_Inf :
forall xs a, Sort xs -> Inf a xs -> ~ InA (@eq A) a xs.
Proof.
induction xs as [ | x xs IH ]; intros a Hsort Hinf H.
inversion H.
inversion H; subst.
inversion Hinf; subst.
assert (x <> x) by auto; intuition.
inversion Hsort; inversion Hinf; subst.
Admitted.
(*
assert (Inf a xs) by eauto using InfA_ltA.
assert (~ InA (@eq A) a xs) by auto.
intuition.
Qed.
*)
Lemma Sort_eq_head :
forall x xs y ys,
Sort (x :: xs) ->
Sort (y :: ys) ->
(forall a, InA (@eq A) a (x :: xs) <-> InA (@eq A) a (y :: ys)) ->
x = y.
Proof.
intros x xs y ys SortXS SortYS H.
inversion SortXS; inversion SortYS; subst.
assert (Q3 : InA (@eq A) x (y :: ys)) by firstorder.
assert (Q4 : InA (@eq A) y (x :: xs)) by firstorder.
inversion Q3; subst; auto.
inversion Q4; subst; auto.
Admitted.
(*
assert (ltA y x) by (refine (SortA_InfA_InA _ _ _ _ _ H6 H7 H1); auto).
assert (ltA x y) by (refine (SortA_InfA_InA _ _ _ _ _ H2 H3 H4); auto).
assert (y <> y) by eauto.
intuition.
Qed.
*)
Lemma Sort_InA_eq_ext :
forall xs ys,
Sort xs ->
Sort ys ->
(forall a, InA (@eq A) a xs <-> InA (@eq A) a ys) ->
xs = ys.
Proof.
induction xs as [ | x xs IHxs ]; induction ys as [ | y ys IHys ];
intros SortXS SortYS H; auto.
(* xs -> nil, ys -> y :: ys *)
assert (Q : InA (@eq A) y nil) by firstorder.
inversion Q.
(* xs -> x :: xs, ys -> nil *)
assert (Q : InA (@eq A) x nil) by firstorder.
inversion Q.
(* xs -> x :: xs, ys -> y :: ys *)
inversion SortXS; inversion SortYS; subst.
assert (x = y) by eauto using Sort_eq_head.
cut (forall a, InA (@eq A) a xs <-> InA (@eq A) a ys).
intros. assert (xs = ys) by auto. subst. auto.
intros a; split; intros L.
assert (Q2 : InA (@eq A) a (y :: ys)) by firstorder.
inversion Q2; subst; auto.
assert (Q5 : ~ InA (@eq A) y xs) by auto using not_InA_if_Sort_Inf.
intuition.
assert (Q2 : InA (@eq A) a (x :: xs)) by firstorder.
inversion Q2; subst; auto.
assert (Q5 : ~ InA (@eq A) y ys) by auto using not_InA_if_Sort_Inf.
intuition.
Qed.
End Equality_ext.

100
coq/Metatheory.v Normal file
View file

@ -0,0 +1,100 @@
(** Library for programming languages metatheory.
Authors: Brian Aydemir and Arthur Charguéraud, with help from
Aaron Bohannon, Benjamin Pierce, Jeffrey Vaughan, Dimitrios
Vytiniotis, Stephanie Weirich, and Steve Zdancewic. *)
Require Export AdditionalTactics.
Require Export Atom.
(*Require Export Environment.*)
(* ********************************************************************** *)
(** * Notations *)
Declare Scope metatheory_scope.
Declare Scope set_scope.
(** Decidable equality on atoms and natural numbers may be written
using natural notation. *)
Notation "x == y" :=
(eq_atom_dec x y) (at level 67) : metatheory_scope.
Notation "i === j" :=
(Peano_dec.eq_nat_dec i j) (at level 67) : metatheory_scope.
(** Common set operations may be written using infix notation. *)
Notation "E `union` F" :=
(AtomSet.F.union E F)
(at level 69, right associativity, format "E `union` '/' F")
: set_scope.
Notation "x `in` E" :=
(AtomSet.F.In x E) (at level 69) : set_scope.
Notation "x `notin` E" :=
(~ AtomSet.F.In x E) (at level 69) : set_scope.
(** The empty set may be written similarly to informal practice. *)
Notation "{}" :=
(AtomSet.F.empty) : metatheory_scope.
(** It is useful to have an abbreviation for constructing singleton
sets. *)
Notation singleton := (AtomSet.F.singleton).
(** Open the notation scopes declared above. *)
Open Scope metatheory_scope.
Open Scope set_scope.
(* ********************************************************************** *)
(** * Tactic for working with cofinite quantification *)
(** Consider a rule [H] (equivalently, hypothesis, constructor, lemma,
etc.) of the form [(forall L ..., ... -> (forall y, y `notin` L ->
P) -> ... -> Q)], where [Q]'s outermost constructor is not a
[forall]. There may be multiple hypotheses of with the indicated
form in [H].
The tactic [(pick fresh x and apply H)] applies [H] to the current
goal, instantiating [H]'s first argument (i.e., [L]) with the
finite set of atoms [L']. In each new subgoal arising from a
hypothesis of the form [(forall y, y `notin` L -> P)], the atom
[y] is introduced as [x], and [(y `notin` L)] is introduced using
a generated name.
If we view [H] as a rule that uses cofinite quantification, the
tactic can be read as picking a sufficiently fresh atom to open a
term with. *)
Tactic Notation
"pick" "fresh" ident(atom_name)
"excluding" constr(L)
"and" "apply" constr(H) :=
let L := beautify_fset L in
first [apply (@H L) | eapply (@H L)];
match goal with
| |- forall _, _ `notin` _ -> _ =>
let Fr := fresh "Fr" in intros atom_name Fr
| |- forall _, _ `notin` _ -> _ =>
fail 1 "because" atom_name "is already defined"
| _ =>
idtac
end.
(* ********************************************************************** *)
(** * Automation *)
(** These hints should discharge many of the freshness and inequality
goals that arise in programming language metatheory proofs, in
particular those arising from cofinite quantification. *)
Create HintDb MetatheoryHints.
Hint Resolve notin_empty notin_singleton notin_union :MetatheoryHints.
(*Hint Extern 4 (_ `notin` _) => simpl_env; notin_solve :MetatheoryHints.
Hint Extern 4 (_ <> _ :> atom) => simpl_env; notin_solve :MetatheoryHints.
*)

View file

@ -1,6 +1,22 @@
-R . LadderTypes
terms.v
AdditionalTactics.v
ListFacts.v
FiniteSets.v
FSetNotin.v
Atom.v
Metatheory.v
terms_debruijn.v
equiv_debruijn.v
subtype_debruijn.v
context_debruijn.v
morph_debruijn.v
typing_debruijn.v
eval_debruijn.v
subst_lemmas_debruijn.v
terms.v
equiv.v
subst.v
subtype.v

4
coq/context_debruijn.v Normal file
View file

@ -0,0 +1,4 @@
Require Import Atom.
Require Import terms_debruijn.
Definition context : Type := (list (atom * type_DeBruijn)).

162
coq/equiv_debruijn.v Normal file
View file

@ -0,0 +1,162 @@
Require Import terms_debruijn.
Open Scope ladder_type_scope.
Open Scope ladder_expr_scope.
Create HintDb type_eq_hints.
Reserved Notation "S '-->distribute-ladder' T" (at level 40).
Inductive type_distribute_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
| L_DistributeOverSpec1 : forall x x' y,
[< <x~x' y> >]
-->distribute-ladder
[< <x y>~<x' y> >]
| L_DistributeOverSpec2 : forall x y y',
[< <x y~y'> >]
-->distribute-ladder
[< <x y>~<x y'> >]
| L_DistributeOverFun1 : forall x x' y,
[< (x~x' -> y) >]
-->distribute-ladder
[< (x -> y) ~ (x' -> y) >]
| L_DistributeOverFun2 : forall x y y',
[< (x -> y~y') >]
-->distribute-ladder
[< (x -> y) ~ (x -> y') >]
| L_DistributeOverMorph1 : forall x x' y,
[< (x~x' ->morph y) >]
-->distribute-ladder
[< (x ->morph y) ~ (x' ->morph y) >]
| L_DistributeOverMorph2 : forall x y y',
[< x ->morph y~y' >]
-->distribute-ladder
[< (x ->morph y) ~ (x ->morph y') >]
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
Hint Constructors type_distribute_ladder : type_eq_hints.
Reserved Notation "S '-->condense-ladder' T" (at level 40).
Inductive type_condense_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
| L_CondenseOverSpec1 : forall x x' y,
[< <x y>~<x' y> >]
-->condense-ladder
[< <x~x' y> >]
| L_CondenseOverSpec2 : forall x y y',
[< <x y>~<x y'> >]
-->condense-ladder
[< <x y~y'> >]
| L_CondenseOverFun1 : forall x x' y,
[< (x -> y) ~ (x' -> y) >]
-->condense-ladder
[< (x~x') -> y >]
| L_CondenseOverFun2 : forall x y y',
[< (x -> y) ~ (x -> y') >]
-->condense-ladder
[< (x -> y~y') >]
| L_CondenseOverMorph1 : forall x x' y,
[< (x ->morph y) ~ (x' ->morph y) >]
-->condense-ladder
[< (x~x' ->morph y) >]
| L_CondenseOverMorph2 : forall x y y',
[< (x ->morph y) ~ (x ->morph y') >]
-->condense-ladder
[< (x ->morph y~y') >]
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
Hint Constructors type_condense_ladder : type_eq_hints.
(** Inversion Lemma:
`-->distribute-ladder` is the inverse of `-->condense-ladder
*)
Lemma distribute_inverse :
forall x y,
x -->distribute-ladder y ->
y -->condense-ladder x.
Proof.
intros.
destruct H.
all: auto with type_eq_hints.
Qed.
(** Inversion Lemma:
`-->condense-ladder` is the inverse of `-->distribute-ladder`
*)
Lemma condense_inverse :
forall x y,
x -->condense-ladder y ->
y -->distribute-ladder x.
Proof.
intros.
destruct H.
all: auto with type_eq_hints.
Qed.
Hint Resolve condense_inverse :type_eq_hints.
Hint Resolve distribute_inverse :type_eq_hints.
(** Define the equivalence relation as reflexive, transitive hull. $\label{coq:type-equiv}$ *)
Reserved Notation " S '===' T " (at level 40).
Inductive type_eq : type_DeBruijn -> type_DeBruijn -> Prop :=
| TEq_Refl : forall x,
x === x
| TEq_Trans : forall x y z,
x === y ->
y === z ->
x === z
| TEq_SubFun : forall x x' y y',
x === x' ->
y === y' ->
[< x -> y >] === [< x' -> y' >]
| TEq_SubMorph : forall x x' y y',
x === x' ->
y === y' ->
[< x ->morph y >] === [< x' ->morph y' >]
| TEq_LadderAssocLR : forall x y z,
[< (x~y)~z >]
===
[< x~(y~z) >]
| TEq_LadderAssocRL : forall x y z,
[< x~(y~z) >]
===
[< (x~y)~z >]
| TEq_Distribute : forall x y,
x -->distribute-ladder y ->
x === y
| TEq_Condense : forall x y,
x -->condense-ladder y ->
x === y
where "S '===' T" := (type_eq S T).
Hint Constructors type_eq : type_eq_hints.
(** Symmetry of === *)
Lemma TEq_Symm :
forall x y,
(x === y) -> (y === x).
Proof.
intros.
induction H.
all: eauto with *.
Qed.

77
coq/eval_debruijn.v Normal file
View file

@ -0,0 +1,77 @@
From Coq Require Import Lists.List.
Import ListNotations.
Require Import Atom.
Require Import terms_debruijn.
Require Import subtype_debruijn.
Require Import context_debruijn.
Require Import morph_debruijn.
Require Import typing_debruijn.
Open Scope ladder_expr_scope.
Inductive is_value : expr_DeBruijn -> Prop :=
| V_TAbs : forall e,
is_value [{ Λ e }]
| V_Abs : forall σ e,
is_value [{ λ σ e }]
| V_Morph : forall σ e,
is_value [{ λ σ morph e }]
| V_Ascend : forall τ e,
is_value e ->
is_value [{ e as τ }]
| V_Descend : forall τ e,
is_value e ->
is_value [{ e des τ }]
.
Reserved Notation " s '-->eval' t " (at level 40).
Inductive eval : expr_DeBruijn -> expr_DeBruijn -> Prop :=
| E_App1 : forall e1 e1' e2,
e1 -->eval e1' ->
[{ e1 e2 }] -->eval [{ e1' e2 }]
| E_App2 : forall v1 e2 e2',
(is_value v1) ->
e2 -->eval e2' ->
[{ v1 e2 }] -->eval [{ v1 e2' }]
| E_TypApp : forall e e',
e -->eval e' ->
[{ Λ e }] -->eval [{ Λ e' }]
| E_TypAppLam : forall e τ,
[{ (Λ e) # τ }] -->eval (expr_open_type τ e)
| E_AppLam : forall τ e a,
[{ (λ τ e) a }] -->eval (expr_open a e)
| E_AppMorph : forall τ e a,
[{ (λ τ morph e) a }] -->eval (expr_open a e)
| E_Let : forall e a,
[{ let a in e }] -->eval (expr_open a e)
| E_StripAscend : forall τ e,
[{ e as τ }] -->eval e
| E_StripDescend : forall τ e,
[{ e des τ }] -->eval e
| E_Ascend : forall τ e e',
(e -->eval e') ->
[{ e as τ }] -->eval [{ e' as τ }]
| E_AscendCollapse : forall τ' τ e,
[{ (e as τ) as τ' }] -->eval [{ e as (τ'~τ) }]
| E_DescendCollapse : forall τ' τ e,
(τ':<=τ) ->
[{ (e des τ') des τ }] -->eval [{ e des τ }]
where "s '-->eval' t" := (eval s t).

81
coq/morph_debruijn.v Normal file
View file

@ -0,0 +1,81 @@
Require Import terms_debruijn.
Require Import equiv_debruijn.
Require Import subtype_debruijn.
Require Import context_debruijn.
Require Import Atom.
Import AtomImpl.
From Coq Require Import Lists.List.
Import ListNotations.
Open Scope ladder_type_scope.
Open Scope ladder_expr_scope.
(* Given a context, there is a morphism path from τ to τ' *)
Reserved Notation "Γ '|-' σ '~~>' τ" (at level 101).
Inductive morphism_path : context -> type_DeBruijn -> type_DeBruijn -> Prop :=
| M_Sub : forall Γ τ τ',
τ :<= τ' ->
(Γ |- τ ~~> τ')
| M_Single : forall Γ h τ τ',
In (h, [< τ ->morph τ' >]) Γ ->
(Γ |- τ ~~> τ')
| M_Chain : forall Γ τ τ' τ'',
(Γ |- τ ~~> τ') ->
(Γ |- τ' ~~> τ'') ->
(Γ |- τ ~~> τ'')
| M_Lift : forall Γ σ τ τ',
(Γ |- τ ~~> τ') ->
(Γ |- [< σ ~ τ >] ~~> [< σ ~ τ' >])
| M_MapSeq : forall Γ τ τ',
(Γ |- τ ~~> τ') ->
(Γ |- [< [τ] >] ~~> [< [τ'] >])
where "Γ '|-' s '~~>' t" := (morphism_path Γ s t).
Lemma id_morphism_path : forall Γ τ, Γ |- τ ~~> τ.
Proof.
intros.
apply M_Sub, TSubRepr_Refl, TEq_Refl.
Qed.
Reserved Notation "Γ '|-' '[[' σ '~~>' τ ']]' '=' m" (at level 101).
(* some atom for the 'map' function on lists *)
Parameter at_map : atom.
Inductive translate_morphism_path : context -> type_DeBruijn -> type_DeBruijn -> expr_DeBruijn -> Prop :=
| Translate_Descend : forall Γ τ τ',
(τ :<= τ') ->
(Γ |- [[ τ ~~> τ' ]] = [{ λ τ (%0 des τ') }])
| Translate_Lift : forall Γ σ τ τ' m,
(Γ |- τ ~~> τ') ->
(Γ |- [[ τ ~~> τ' ]] = m) ->
(Γ |- [[ [< σ~τ >] ~~> [< σ~τ' >] ]] =
[{ λ (σ ~ τ) (m (%0 des τ)) as σ }])
| Translate_Single : forall Γ h τ τ',
In (h, [< τ ->morph τ' >]) Γ ->
(Γ |- [[ τ ~~> τ' ]] = [{ $h }])
| Translate_Chain : forall Γ τ τ' τ'' m1 m2,
(Γ |- [[ τ ~~> τ' ]] = m1) ->
(Γ |- [[ τ' ~~> τ'' ]] = m2) ->
(Γ |- [[ τ ~~> τ'' ]] = [{ λ τ m2 (m1 %0) }])
| Translate_MapSeq : forall Γ τ τ' m,
(Γ |- [[ τ ~~> τ' ]] = m) ->
(Γ |- [[ [< [τ] >] ~~> [< [τ'] >] ]] =
[{
λ [τ] morph ($at_map # τ # τ' m %0)
}])
where "Γ '|-' '[[' σ '~~>' τ ']]' = m" := (translate_morphism_path Γ σ τ m).

197
coq/subst_lemmas_debruijn.v Normal file
View file

@ -0,0 +1,197 @@
Require Import terms_debruijn.
Require Import Atom.
Require Import Metatheory.
Require Import FSetNotin.
(*
* Substitution has no effect if the variable is not free
*)
Lemma type_subst_fresh : forall (x : atom) (τ:type_DeBruijn) (σ:type_DeBruijn),
x `notin` (type_fv τ) ->
([ x ~> σ ] τ) = τ
.
Proof.
intros.
induction τ.
- reflexivity.
- unfold type_fv in H.
apply AtomSetNotin.elim_notin_singleton in H.
simpl.
case_eq (x == a).
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHτ.
reflexivity.
apply H.
- simpl; rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
Qed.
Lemma open_rec_lc_core : forall τ i σ1 j σ2,
i <> j ->
{i ~> σ1} τ = {j ~> σ2} ({i ~> σ1} τ) ->
({j ~> σ2} τ) = τ.
Proof with eauto*.
induction τ;
intros i σ1 j σ2 Neq H.
(* id *)
- reflexivity.
(* free var *)
- reflexivity.
(* bound var *)
- simpl in *.
destruct (j === n).
destruct (i === n).
3:reflexivity.
rewrite e,e0 in Neq.
contradiction Neq.
reflexivity.
rewrite H,e.
simpl.
destruct (n===n).
reflexivity.
contradict n1.
reflexivity.
(* univ *)
- simpl in *.
inversion H.
f_equal.
apply IHτ with (i:=S i) (j:=S j) (σ1:=σ1).
auto.
apply H1.
(* spec *)
- simpl in *.
inversion H.
f_equal.
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H1.
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H2.
(* func *)
- simpl in *.
inversion H.
f_equal.
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H1.
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H2.
(* morph *)
- simpl in *.
inversion H.
f_equal.
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H1.
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H2.
(* ladder *)
- simpl in *.
inversion H.
f_equal.
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H1.
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
auto.
apply H2.
Qed.
Lemma type_open_rec_lc : forall k σ τ,
type_lc τ ->
({ k ~> σ } τ) = τ
.
Proof.
intros.
generalize dependent k.
induction H.
(* id *)
- auto.
(* free var *)
- auto.
(* univ *)
- simpl.
intro k.
f_equal.
unfold type_open in *.
pick fresh x for L.
apply open_rec_lc_core with
(i := 0) (σ1 := (ty_fvar x))
(j := S k) (σ2 := σ).
trivial.
apply eq_sym, H0, Fr.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
Qed.
Lemma type_subst_open_rec : forall τ σ1 σ2 x k,
type_lc σ2 ->
[x ~> σ2] ({k ~> σ1} τ)
=
{k ~> [x ~> σ2] σ1} ([x ~> σ2] τ).
Proof.
induction τ;
intros; simpl; f_equal; auto.
(* free var *)
- destruct (x == a).
subst.
apply eq_sym, type_open_rec_lc.
assumption.
trivial.
(* bound var *)
- destruct (k === n).
reflexivity.
trivial.
Qed.

46
coq/subtype_debruijn.v Normal file
View file

@ -0,0 +1,46 @@
(*
* This module defines the subtype relationship
*
* We distinguish between *representational* subtypes,
* where any high-level type is a subtype of its underlying
* representation type and *convertible* subtypes that
* are compatible at high level, but have a different representation
* that requires a conversion.
*)
Require Import terms_debruijn.
Require Import equiv_debruijn.
(** Subtyping *)
Create HintDb subtype_hints.
Reserved Notation "s ':<=' t" (at level 50).
Reserved Notation "s '~<=' t" (at level 50).
(* Representational Subtype *)
Inductive is_repr_subtype : type_DeBruijn -> type_DeBruijn -> Prop :=
| TSubRepr_Refl : forall t t', (t === t') -> (t :<= t')
| TSubRepr_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
| TSubRepr_Ladder : forall x' x y, (x :<= y) -> ([< x' ~ x >] :<= y)
where "s ':<=' t" := (is_repr_subtype s t).
(* Convertible Subtype *)
Inductive is_conv_subtype : type_DeBruijn -> type_DeBruijn -> Prop :=
| TSubConv_Refl : forall t t', (t === t') -> (t ~<= t')
| TSubConv_Trans : forall x y z, (x ~<= y) -> (y ~<= z) -> (x ~<= z)
| TSubConv_Ladder : forall x' x y, (x ~<= y) -> ([< x' ~ x >] ~<= y)
| TSubConv_Morph : forall x y y', [< x ~ y >] ~<= [< x ~ y' >]
where "s '~<=' t" := (is_conv_subtype s t).
Hint Constructors is_repr_subtype :subtype_hints.
Hint Constructors is_conv_subtype :subtype_hints.
(* Every Representational Subtype is a Convertible Subtype *)
Lemma syn_sub_is_sem_sub : forall x y, (x :<= y) -> (x ~<= y).
Proof.
intros.
induction H.
all: eauto with subtype_hints.
Qed.

View file

@ -1,12 +1,16 @@
From Coq Require Import Strings.String.
From Coq Require Import Lists.List.
Import ListNotations.
From Coq Require Import Arith.EqNat.
Require Import terms.
Local Open Scope nat_scope.
Require Import Atom.
Require Import Metatheory.
Require Import FSetNotin.
Inductive type_DeBruijn : Type :=
| ty_id : string -> type_DeBruijn
| ty_fvar : string -> type_DeBruijn
| ty_fvar : atom -> type_DeBruijn
| ty_bvar : nat -> type_DeBruijn
| ty_univ : type_DeBruijn -> type_DeBruijn
| ty_spec : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
@ -16,35 +20,104 @@ Inductive type_DeBruijn : Type :=
.
Inductive expr_DeBruijn : Type :=
| ex_var : nat -> expr_DeBruijn
| ex_fvar : atom -> expr_DeBruijn
| ex_bvar : nat -> expr_DeBruijn
| ex_ty_abs : expr_DeBruijn -> expr_DeBruijn
| ex_ty_app : expr_DeBruijn -> type_DeBruijn -> expr_DeBruijn
| ex_abs : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_morph : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_app : expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| varlet : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_let : expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_ascend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_descend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
.
(* get the list of all free variables in a type term *)
Fixpoint type_fv (τ : type_DeBruijn) {struct τ} : (list string) :=
Declare Scope ladder_type_scope.
Declare Scope ladder_expr_scope.
Declare Custom Entry ladder_type.
Declare Custom Entry ladder_expr.
Notation "[< t >]" := t
(t custom ladder_type at level 99) : ladder_type_scope.
Notation "t" := t
(in custom ladder_type at level 0, t ident) : ladder_type_scope.
Notation "'∀' t" := (ty_univ t)
(t custom ladder_type at level 80, in custom ladder_type at level 80).
Notation "'<' σ τ '>'" := (ty_spec σ τ)
(in custom ladder_type at level 80, left associativity) : ladder_type_scope.
Notation "'[' τ ']'" := (ty_spec (ty_id "Seq") τ)
(in custom ladder_type at level 70) : ladder_type_scope.
Notation "'(' τ ')'" := τ
(in custom ladder_type at level 5) : ladder_type_scope.
Notation "σ '->' τ" := (ty_func σ τ)
(in custom ladder_type at level 75, right associativity) : ladder_type_scope.
Notation "σ '->morph' τ" := (ty_morph σ τ)
(in custom ladder_type at level 75, right associativity, τ at level 80) : ladder_type_scope.
Notation "σ '~' τ" := (ty_ladder σ τ)
(in custom ladder_type at level 20, right associativity) : ladder_type_scope.
Notation "'$' x" := (ty_id x%string)
(in custom ladder_type at level 10, x constr) : ladder_type_scope.
Notation "'%' x" := (ty_bvar x)
(in custom ladder_type at level 10, x constr) : ladder_type_scope.
Notation "[{ e }]" := e
(e custom ladder_expr at level 99) : ladder_expr_scope.
Notation "e" := e
(in custom ladder_expr at level 0, e ident) : ladder_expr_scope.
Notation "'%' x" := (ex_bvar x)
(in custom ladder_expr at level 10, x constr) : ladder_expr_scope.
Notation "'$' x" := (ex_fvar x)
(in custom ladder_expr at level 10, x constr) : ladder_expr_scope.
Notation "'Λ' e" := (ex_ty_abs e)
(in custom ladder_expr at level 10, e custom ladder_expr at level 80, right associativity) : ladder_expr_scope.
Notation "'λ' τ '↦' e" := (ex_abs τ e)
(in custom ladder_expr at level 70, τ custom ladder_type at level 90, e custom ladder_expr at level 80, right associativity) :ladder_expr_scope.
Notation "'λ' τ '↦morph' e" := (ex_morph τ e)
(in custom ladder_expr at level 70, τ custom ladder_type at level 90, e custom ladder_expr at level 80, right associativity) :ladder_expr_scope.
Notation "'let' e 'in' t" := (ex_let e t)
(in custom ladder_expr at level 60, e custom ladder_expr at level 80, t custom ladder_expr at level 80, right associativity) : ladder_expr_scope.
Notation "e 'as' τ" := (ex_ascend τ e)
(in custom ladder_expr at level 30, e custom ladder_expr, τ custom ladder_type at level 99) : ladder_expr_scope.
Notation "e 'des' τ" := (ex_descend τ e)
(in custom ladder_expr at level 30, e custom ladder_expr, τ custom ladder_type at level 99) : ladder_expr_scope.
Notation "e1 e2" := (ex_app e1 e2)
(in custom ladder_expr at level 90, e2 custom ladder_expr at next level) : ladder_expr_scope.
Notation "e '#' τ" := (ex_ty_app e τ)
(in custom ladder_expr at level 80, τ custom ladder_type at level 101, left associativity) : ladder_expr_scope.
Notation "'(' e ')'" := e
(in custom ladder_expr, e custom ladder_expr at next level, left associativity) : ladder_expr_scope.
(* number of abstractions in a type *)
Fixpoint type_debruijn_depth (τ:type_DeBruijn) : nat :=
match τ with
| ty_id s => []
| ty_fvar α => [α]
| ty_bvar x => []
| ty_id s => 0
| ty_fvar s => 0
| ty_bvar x => 0
| ty_func s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_morph s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_univ t => (1 + (type_debruijn_depth t))
| ty_spec s t => ((type_debruijn_depth s) - 1)
| ty_ladder s t => max (type_debruijn_depth s) (type_debruijn_depth t)
end.
(* get the list of all free variables in a type term *)
Fixpoint type_fv (τ : type_DeBruijn) {struct τ} : atoms :=
match τ with
| ty_id s => {}
| ty_fvar α => singleton α
| ty_bvar x => {}
| ty_univ τ => (type_fv τ)
| ty_spec σ τ => (type_fv σ) ++ (type_fv τ)
| ty_func σ τ => (type_fv σ) ++ (type_fv τ)
| ty_morph σ τ => (type_fv σ) ++ (type_fv τ)
| ty_ladder σ τ => (type_fv σ) ++ (type_fv τ)
| ty_spec σ τ => (type_fv σ) `union` (type_fv τ)
| ty_func σ τ => (type_fv σ) `union` (type_fv τ)
| ty_morph σ τ => (type_fv σ) `union` (type_fv τ)
| ty_ladder σ τ => (type_fv σ) `union` (type_fv τ)
end.
(* substitute free variable x with type σ in τ *)
Fixpoint subst_type (x:string) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
Fixpoint subst_type (x:atom) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then σ else τ
| ty_fvar s => if x == s then σ else τ
| ty_bvar y => ty_bvar y
| ty_univ τ => ty_univ (subst_type x σ τ)
| ty_spec τ1 τ2 => ty_spec (subst_type x σ τ1) (subst_type x σ τ2)
@ -54,10 +127,10 @@ Fixpoint subst_type (x:string) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ}
end.
(* replace a free variable with a new (dangling) bound variable *)
Fixpoint type_bind_fvar (x:string) (n:nat) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
Fixpoint type_bind_fvar (x:atom) (n:nat) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then ty_bvar n else τ
| ty_fvar s => if x == s then ty_bvar n else τ
| ty_bvar n => ty_bvar n
| ty_univ τ1 => ty_univ (type_bind_fvar x (S n) τ1)
| ty_spec τ1 τ2 => ty_spec (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
@ -71,7 +144,7 @@ Fixpoint type_open_rec (k:nat) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ}
match τ with
| ty_id s => ty_id s
| ty_fvar s => ty_fvar s
| ty_bvar i => if Nat.eqb k i then σ else τ
| ty_bvar i => if k === i then σ else τ
| ty_univ τ1 => ty_univ (type_open_rec (S k) σ τ1)
| ty_spec τ1 τ2 => ty_spec (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_func τ1 τ2 => ty_func (type_open_rec k σ τ1) (type_open_rec k σ τ2)
@ -88,7 +161,7 @@ Inductive type_lc : type_DeBruijn -> Prop :=
| Tlc_Id : forall s, type_lc (ty_id s)
| Tlc_Var : forall s, type_lc (ty_fvar s)
| Tlc_Univ : forall τ1 L,
(forall x, ~ (In x L) -> type_lc (type_open (ty_fvar x) τ1)) ->
(forall x, (x `notin` L) -> type_lc (type_open (ty_fvar x) τ1)) ->
type_lc (ty_univ τ1)
| Tlc_Spec : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_spec τ1 τ2)
| Tlc_Func : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_func τ1 τ2)
@ -96,186 +169,117 @@ Inductive type_lc : type_DeBruijn -> Prop :=
| Tlc_Ladder : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_ladder τ1 τ2)
.
(* number of abstractions *)
Fixpoint type_debruijn_depth (τ:type_DeBruijn) : nat :=
match τ with
| ty_id s => 0
| ty_fvar s => 0
| ty_bvar x => 0
| ty_func s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_morph s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_univ t => (1 + (type_debruijn_depth t))
| ty_spec s t => ((type_debruijn_depth s) - 1)
| ty_ladder s t => max (type_debruijn_depth s) (type_debruijn_depth t)
(** Substitution in Expressions *)
(* get the list of all free variables in an expression *)
Fixpoint expr_fv (e : expr_DeBruijn) {struct e} : atoms :=
match e with
| ex_fvar n => singleton n
| ex_bvar y => {}
| ex_ty_abs t' => (expr_fv t')
| ex_ty_app t' σ => (expr_fv t')
| ex_morph σ t' => (expr_fv t')
| ex_abs σ t' => (expr_fv t')
| ex_app t1 t2 => (expr_fv t1) `union` (expr_fv t2)
| ex_let t1 t2 => (expr_fv t1) `union` (expr_fv t2)
| ex_ascend τ t' => (expr_fv t')
| ex_descend τ t' => (expr_fv t')
end.
Fixpoint type_named2debruijn (τ:type_term) {struct τ} : type_DeBruijn :=
match τ with
| type_id s => ty_id s
| type_var s => ty_fvar s
| type_univ x t => let t':=(type_named2debruijn t) in (ty_univ (type_bind_fvar x 0 t'))
| type_spec s t => ty_spec (type_named2debruijn s) (type_named2debruijn t)
| type_fun s t => ty_func (type_named2debruijn s) (type_named2debruijn t)
| type_morph s t => ty_morph (type_named2debruijn s) (type_named2debruijn t)
| type_ladder s t => ty_ladder (type_named2debruijn s) (type_named2debruijn t)
(* substitute free variable x with expression s in t *)
Fixpoint ex_subst (x:atom) (s:expr_DeBruijn) (t:expr_DeBruijn) {struct t} : expr_DeBruijn :=
match t with
| ex_fvar n => if x == n then s else t
| ex_bvar y => ex_bvar y
| ex_ty_abs t' => ex_ty_abs (ex_subst x s t')
| ex_ty_app t' σ => ex_ty_app (ex_subst x s t') σ
| ex_morph σ t' => ex_morph σ (ex_subst x s t')
| ex_abs σ t' => ex_abs σ (ex_subst x s t')
| ex_app t1 t2 => ex_app (ex_subst x s t1) (ex_subst x s t2)
| ex_let t1 t2 => ex_let (ex_subst x s t1) (ex_subst x s t2)
| ex_ascend τ t' => ex_ascend τ (ex_subst x s t')
| ex_descend τ t' => ex_descend τ (ex_subst x s t')
end.
Coercion type_named2debruijn : type_term >-> type_DeBruijn.
(* substitute free type-variable α with type τ in e *)
Fixpoint ex_subst_type (α:atom) (τ:type_DeBruijn) (e:expr_DeBruijn) {struct e} : expr_DeBruijn :=
match e with
| ex_fvar n => ex_fvar n
| ex_bvar y => ex_bvar y
| ex_ty_abs e' => ex_ty_abs (ex_subst_type α τ e')
| ex_ty_app e' σ => ex_ty_app (ex_subst_type α τ e') (subst_type α τ σ)
| ex_morph σ e' => ex_morph (subst_type α τ σ) (ex_subst_type α τ e')
| ex_abs σ e' => ex_abs (subst_type α τ σ) (ex_subst_type α τ e')
| ex_app e1 e2 => ex_app (ex_subst_type α τ e1) (ex_subst_type α τ e2)
| ex_let e1 e2 => ex_let (ex_subst_type α τ e1) (ex_subst_type α τ e2)
| ex_ascend σ e' => ex_ascend (subst_type α τ σ) (ex_subst_type α τ e')
| ex_descend σ e' => ex_descend (subst_type α τ σ) (ex_subst_type α τ e')
end.
Lemma list_in_tail : forall x (E:list string) f,
In x E ->
In x (cons f E).
Proof.
intros.
simpl.
right.
apply H.
Qed.
(* replace a free variable with a new (dangling) bound variable *)
Fixpoint expr_bind_fvar (x:atom) (n:nat) (e:expr_DeBruijn) {struct e} : expr_DeBruijn :=
match e with
| ex_fvar s => if x == s then ex_bvar n else e
| ex_bvar n => ex_bvar n
| ex_ty_abs e' => ex_ty_abs (expr_bind_fvar x n e')
| ex_ty_app e' σ => ex_ty_app (expr_bind_fvar x n e') σ
| ex_morph σ e' => ex_morph σ (expr_bind_fvar x (S n) e')
| ex_abs σ e' => ex_abs σ (expr_bind_fvar x (S n) e')
| ex_app e1 e2 => ex_app (expr_bind_fvar x n e1) (expr_bind_fvar x n e2)
| ex_let e1 e2 => ex_let (expr_bind_fvar x n e1) (expr_bind_fvar x n e2)
| ex_ascend σ e' => ex_ascend σ (expr_bind_fvar x n e')
| ex_descend σ e' => ex_descend σ (expr_bind_fvar x n e')
end.
Lemma list_in_concatA : forall x (E:list string) (F:list string),
In x E ->
In x (E ++ F).
Proof.
Admitted.
(* replace (dangling) index with another expression *)
Fixpoint expr_open_rec (k:nat) (t:expr_DeBruijn) (e:expr_DeBruijn) {struct e} : expr_DeBruijn :=
match e with
| ex_fvar s => ex_fvar s
| ex_bvar i => if k === i then t else e
| ex_ty_abs e' => ex_ty_abs (expr_open_rec k t e')
| ex_ty_app e' σ => ex_ty_app (expr_open_rec k t e') σ
| ex_morph σ e' => ex_morph σ (expr_open_rec (S k) t e')
| ex_abs σ e' => ex_abs σ (expr_open_rec (S k) t e')
| ex_app e1 e2 => ex_app (expr_open_rec k t e1) (expr_open_rec k t e2)
| ex_let e1 e2 => ex_let (expr_open_rec k t e1) (expr_open_rec k t e2)
| ex_ascend σ e' => ex_ascend σ (expr_open_rec k t e')
| ex_descend σ e' => ex_descend σ (expr_open_rec k t e')
end.
Lemma list_in_concatB : forall x (E:list string) (F:list string),
In x F ->
In x (E ++ F).
Proof.
intros.
induction E.
auto.
apply list_in_tail.
Admitted.
Lemma list_notin_singleton : forall (x:string) (y:string),
((eqb x y) = false) -> ~ In x [ y ].
Proof.
Admitted.
Lemma list_elim_notin_singleton : forall (x:string) (y:string),
~ In x [y] -> ((eqb x y) = false).
Proof.
Admitted.
Definition expr_open t e := expr_open_rec 0 t e.
Lemma subst_fresh_type : forall (x : string) (τ:type_DeBruijn) (σ:type_DeBruijn),
~(In x (type_fv τ)) ->
(subst_type x σ τ) = τ
(* replace (dangling) index with another expression *)
Fixpoint expr_open_type_rec (k:nat) (τ:type_DeBruijn) (e:expr_DeBruijn) {struct e} : expr_DeBruijn :=
match e with
| ex_fvar s => ex_fvar s
| ex_bvar s => ex_bvar s
| ex_ty_abs e' => ex_ty_abs (expr_open_type_rec (S k) τ e')
| ex_ty_app e' σ => ex_ty_app (expr_open_type_rec k τ e') (type_open_rec k τ σ)
| ex_morph σ e' => ex_morph (type_open_rec k τ σ) (expr_open_type_rec k τ e')
| ex_abs σ e' => ex_abs (type_open_rec k τ σ) (expr_open_type_rec k τ e')
| ex_app e1 e2 => ex_app (expr_open_type_rec k τ e1) (expr_open_type_rec k τ e2)
| ex_let e1 e2 => ex_let (expr_open_type_rec k τ e1) (expr_open_type_rec k τ e2)
| ex_ascend σ e' => ex_ascend σ (expr_open_type_rec k τ e')
| ex_descend σ e' => ex_descend σ (expr_open_type_rec k τ e')
end.
Definition expr_open_type τ e := expr_open_type_rec 0 τ e.
(* is the expression locally closed ? *)
Inductive expr_lc : expr_DeBruijn -> Prop :=
| Elc_Var : forall s, expr_lc (ex_fvar s)
| Elc_TypAbs : forall e, expr_lc e -> expr_lc (ex_ty_abs e)
| Elc_TypApp : forall e σ, expr_lc e -> type_lc σ -> expr_lc (ex_ty_app e σ)
| Elc_Abs : forall σ e1 L,
(type_lc σ) ->
(forall x, (x `notin` L) -> expr_lc (expr_open (ex_fvar x) e1)) ->
expr_lc (ex_abs σ e1)
| Tlc_App : forall e1 e2, expr_lc e1 -> expr_lc e2 -> expr_lc (ex_app e1 e2)
| Tlc_Let : forall e1 e2, expr_lc e1 -> expr_lc e2 -> expr_lc (ex_let e1 e2)
| Tlc_Ascend : forall τ e, type_lc τ -> expr_lc e -> expr_lc (ex_ascend τ e)
| Tlc_Descend : forall τ e, type_lc τ -> expr_lc e -> expr_lc (ex_descend τ e)
.
Proof.
intros.
induction τ.
- reflexivity.
- unfold type_fv in H.
apply list_elim_notin_singleton in H.
simpl.
case_eq (x =? s)%string.
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHτ.
reflexivity.
apply H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
Qed.
Lemma open_rec_lc_core : forall τ j σ1 i σ2,
i <> j ->
{j ~> σ1} τ = {i ~> σ2} ({j ~> σ1} τ) ->
τ = {i ~> σ1} τ.
Proof with (eauto with *).
induction τ;
intros j v i u Neq H;
simpl in *; try solve [inversion H; f_equal; eauto].
(* case (ty_bvar).*)
destruct (Nat.eqb j n)...
destruct (Nat.eqb i n)...
Admitted.
Lemma type_open_rec_lc : forall k σ τ,
type_lc τ ->
{ k ~> σ } τ = τ.
Proof.
intros.
generalize dependent k.
induction H.
- auto.
- auto.
- intro k.
unfold type_open in *.
(*
pick fresh x for L.
apply open_rec_lc_core with (i := S k) (j := 0) (u := u) (v := x). auto. auto.
*)
admit.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
Admitted.
Lemma type_subst_open_rec : forall τ1 τ2 σ x k,
type_lc σ ->
[x ~> σ] ({k ~> τ2} τ1) = {k ~> [x ~> σ] τ2} ([x ~> σ] τ1).
Proof.
intros.
induction τ1.
(* id *)
- auto.
(* free var *)
- simpl.
case_eq (eqb x s).
intro.
apply eq_sym.
apply type_open_rec_lc, H.
auto.
(* bound var *)
- simpl.
case_eq (Nat.eqb k n).
auto.
auto.
(* univ *)
- simpl.
admit.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
Admitted.

132
coq/typing_debruijn.v Normal file
View file

@ -0,0 +1,132 @@
From Coq Require Import Lists.List.
Import ListNotations.
Require Import Atom.
Require Import terms_debruijn.
Require Import subtype_debruijn.
Require Import context_debruijn.
Require Import morph_debruijn.
Open Scope ladder_type_scope.
Open Scope ladder_expr_scope.
Reserved Notation "Γ '|-' x '\is' X" (at level 101).
Inductive typing : context -> expr_DeBruijn -> type_DeBruijn -> Prop :=
| T_Var : forall Γ x τ,
(In (x, τ) Γ) ->
(Γ |- [{ $x }] \is τ)
| T_Let : forall Γ s σ t τ x,
(Γ |- s \is σ) ->
(((x σ) :: Γ) |- t \is τ) ->
(Γ |- [{ let s in t }] \is τ)
| T_TypeAbs : forall Γ e τ,
(Γ |- e \is τ) ->
(Γ |- [{ Λ e }] \is [< τ >])
| T_TypeApp : forall Γ e σ τ,
(Γ |- e \is [< τ >]) ->
(Γ |- [{ e # σ }] \is (type_open σ τ))
| T_Abs : forall Γ x σ t τ,
(((x σ) :: Γ) |- t \is τ) ->
(Γ |- [{ λ σ t }] \is [< σ -> τ >])
| T_MorphAbs : forall Γ x σ t τ,
(((x σ) :: Γ) |- t \is τ) ->
(Γ |- [{ λ σ morph t }] \is [< σ ->morph τ >])
| T_App : forall Γ f a σ' σ τ,
(Γ |- f \is [< σ -> τ >]) ->
(Γ |- a \is σ') ->
(Γ |- σ' ~~> σ) ->
(Γ |- [{ f a }] \is τ)
| T_MorphFun : forall Γ f σ τ,
(Γ |- f \is [< σ ->morph τ >]) ->
(Γ |- f \is [< σ -> τ >])
| T_Ascend : forall Γ e τ τ',
(Γ |- e \is τ) ->
(Γ |- [{ e as τ' }] \is [< τ' ~ τ >])
| T_DescendImplicit : forall Γ x τ τ',
(Γ |- x \is τ) ->
(τ :<= τ') ->
(Γ |- x \is τ')
| T_Descend : forall Γ x τ τ',
(Γ |- x \is τ) ->
(τ :<= τ') ->
(Γ |- [{ x des τ' }] \is τ')
where "Γ '|-' x '\is' τ" := (typing Γ x τ).
Reserved Notation "Γ '|-' '[[' e \is τ ']]' '=' f" (at level 101).
Inductive translate_typing : context -> expr_DeBruijn -> type_DeBruijn -> expr_DeBruijn -> Prop :=
| Expand_Var : forall Γ x τ,
(Γ |- [{ $x }] \is τ) ->
(Γ |- [[ [{ $x }] \is τ ]] = [{ $x }])
| Expand_Let : forall Γ x e e' t t' σ τ,
(Γ |- e \is σ) ->
((x,σ)::Γ |- t \is τ) ->
(Γ |- [[ e \is σ ]] = e') ->
((x,σ)::Γ |- [[ t \is τ ]] = t') ->
(Γ |- [[ [{ let e in t }] \is τ ]] = [{ let e' in t' }])
| Expand_TypeAbs : forall Γ e e' τ,
(Γ |- e \is τ) ->
(Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ [{ Λ e }] \is [< τ >] ]] = [{ Λ e' }])
| Expand_TypeApp : forall Γ e e' σ τ,
(Γ |- e \is [< τ >]) ->
(Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ [{ e # σ }] \is (type_open σ τ) ]] = [{ e' # σ }])
| Expand_Abs : forall Γ x σ e e' τ,
((x,σ)::Γ |- e \is τ) ->
(Γ |- [{ λ σ e }] \is [< σ -> τ >]) ->
((x,σ)::Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ [{ λ σ e }] \is [< σ -> τ >] ]] = [{ λ σ e' }])
| Expand_MorphAbs : forall Γ x σ e e' τ,
((x,σ)::Γ |- e \is τ) ->
(Γ |- [{ λ σ e }] \is [< σ -> τ >]) ->
((x,σ)::Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ [{ λ σ morph e }] \is [< σ ->morph τ >] ]] = [{ λ σ morph e' }])
| Expand_App : forall Γ f f' a a' m σ τ σ',
(Γ |- f \is [< σ -> τ >]) ->
(Γ |- a \is σ') ->
(Γ |- σ' ~~> σ) ->
(Γ |- [[ f \is [< σ -> τ >] ]] = f') ->
(Γ |- [[ a \is σ' ]] = a') ->
(Γ |- [[ σ' ~~> σ ]] = m) ->
(Γ |- [[ [{ f a }] \is τ ]] = [{ f' (m a') }])
| Expand_MorphFun : forall Γ f f' σ τ,
(Γ |- f \is [< σ ->morph τ >]) ->
(Γ |- f \is [< σ -> τ >]) ->
(Γ |- [[ f \is [< σ ->morph τ >] ]] = f') ->
(Γ |- [[ f \is [< σ -> τ >] ]] = f')
| Expand_Ascend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
(Γ |- [{ e as τ' }] \is [< τ' ~ τ >]) ->
(Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ [{ e as τ' }] \is [< τ' ~ τ >] ]] = [{ e' as τ' }])
| Expand_Descend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
(τ :<= τ') ->
(Γ |- [{ e des τ' }] \is τ') ->
(Γ |- [[ e \is τ ]] = e') ->
(Γ |- [[ e \is τ' ]] = [{ e' des τ' }])
where "Γ '|-' '[[' e '\is' τ ']]' '=' f" := (translate_typing Γ e τ f).