From Coq Require Import Strings.String. Require Import terms. Require Import subst. Require Import typing. Include Terms. Include Subst. Include Typing. Module Smallstep. Reserved Notation " s '-->α' t " (at level 40). Reserved Notation " s '-->β' t " (at level 40). Inductive expr_alpha : expr_term -> expr_term -> Prop := | EAlpha_Rename : forall x x' τ e, (expr_abs x τ e) -->α (expr_abs x' τ (expr_subst x (expr_var x') e)) | EAlpha_TyRename : forall α α' e, (expr_ty_abs α e) -->α (expr_ty_abs α' (expr_specialize α (type_var α') e)) | EAlpha_SubAbs : forall x τ e e', (e -->α e') -> (expr_abs x τ e) -->α (expr_abs x τ e') | EAlpha_SubTyAbs : forall α e e', (e -->α e') -> (expr_ty_abs α e) -->α (expr_ty_abs α e') | EAlpha_SubApp1 : forall e1 e1' e2, (e1 -->α e1') -> (expr_app e1 e2) -->α (expr_app e1' e2) | EAlpha_SubApp2 : forall e1 e2 e2', (e2 -->α e2') -> (expr_app e1 e2) -->α (expr_app e1 e2') where "s '-->α' t" := (expr_alpha s t). Example a1 : polymorphic_identity1 -->α polymorphic_identity2. Proof. unfold polymorphic_identity1. unfold polymorphic_identity2. apply EAlpha_SubTyAbs. apply EAlpha_Rename. Qed. Inductive beta_step : expr_term -> expr_term -> Prop := | E_App1 : forall e1 e1' e2, e1 -->β e1' -> (expr_app e1 e2) -->β (expr_app e1' e2) | E_App2 : forall v1 e2 e2', (is_value v1) -> e2 -->β e2' -> (expr_app v1 e2) -->β (expr_app v1 e2') | E_TypApp : forall e e' τ, e -->β e' -> (expr_ty_app e τ) -->β (expr_ty_app e' τ) | E_TypAppLam : forall α e τ, (expr_ty_app (expr_ty_abs α e) τ) -->β (expr_specialize α τ e) | E_AppLam : forall x τ e a, (expr_app (expr_abs x τ e) a) -->β (expr_subst x a e) | E_AppMorph : forall x τ e a, (expr_app (expr_morph x τ e) a) -->β (expr_subst x a e) | E_Let : forall x e a, (expr_let x a e) -->β (expr_subst x a e) | E_StripAscend : forall τ e, (expr_ascend τ e) -->β e | E_StripDescend : forall τ e, (expr_descend τ e) -->β e | E_Ascend : forall τ e e', (e -->β e') -> (expr_ascend τ e) -->β (expr_ascend τ e') | E_AscendCollapse : forall τ' τ e, (expr_ascend τ' (expr_ascend τ e)) -->β (expr_ascend (type_ladder τ' τ) e) | E_DescendCollapse : forall τ' τ e, (τ':<=τ) -> (expr_descend τ (expr_descend τ' e)) -->β (expr_descend τ e) where "s '-->β' t" := (beta_step s t). Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop := | Multi_Refl : forall (x : X), multi R x x | Multi_Step : forall (x y z : X), R x y -> multi R y z -> multi R x z. Notation " s -->α* t " := (multi expr_alpha s t) (at level 40). Notation " s -->β* t " := (multi beta_step s t) (at level 40). Example reduce1 : [{ let "deg2turns" := (λ"x" $"Angle"$~$"Degrees"$~$"ℝ"$ ↦morph ((%"/"% (%"x"% des $"ℝ"$) %"360"%) as $"Angle"$~$"Turns"$)) in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) ) }] -->β* [{ ((%"/"% %"60"%) %"360"%) as $"Angle"$~$"Turns"$ }]. Proof. apply Multi_Step with (y:=[{ (λ"x" $"Angle"$~$"Degrees"$~$"ℝ"$ ↦morph (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$)) (%"60"% as $"Angle"$~$"Degrees"$) }]). apply E_Let. apply Multi_Step with (y:=(expr_subst "x" [{%"60"% as $"Angle"$~$"Degrees"$}] [{ (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$) }])). apply E_AppMorph. simpl. apply Multi_Step with (y:=[{ ((%"/"% (%"60"% as $"Angle"$~$"Degrees"$)) %"360"%) as $"Angle"$~$"Turns"$ }]). apply E_Ascend. apply E_App1. apply E_App2. apply V_Abs, VAbs_Var. apply E_StripDescend. apply Multi_Step with (y:=[{ (%"/"% %"60"% %"360"%) as $"Angle"$~$"Turns"$ }]). apply E_Ascend. apply E_App1. apply E_App2. apply V_Abs, VAbs_Var. apply E_StripAscend. apply Multi_Refl. Qed. End Smallstep.