(* Define the abstract syntax of the calculus * by inductive definition of type-terms * and expression-terms. *) From Coq Require Import Strings.String. Module Terms. (* types *) Inductive type_term : Type := | type_id : string -> type_term | type_var : string -> type_term | type_fun : type_term -> type_term -> type_term | type_univ : string -> type_term -> type_term | type_spec : type_term -> type_term -> type_term | type_morph : type_term -> type_term -> type_term | type_ladder : type_term -> type_term -> type_term . (* expressions *) Inductive expr_term : Type := | expr_var : string -> expr_term | expr_ty_abs : string -> expr_term -> expr_term | expr_ty_app : expr_term -> type_term -> expr_term | expr_tm_abs : string -> type_term -> expr_term -> expr_term | expr_tm_abs_morph : string -> type_term -> expr_term -> expr_term | expr_tm_app : expr_term -> expr_term -> expr_term | expr_let : string -> type_term -> expr_term -> expr_term -> expr_term | expr_ascend : type_term -> expr_term -> expr_term | expr_descend : type_term -> expr_term -> expr_term . (* values *) Inductive is_value : expr_term -> Prop := | V_ValAbs : forall x τ e, (is_value (expr_tm_abs x τ e)) | V_TypAbs : forall τ e, (is_value (expr_ty_abs τ e)) | V_Ascend : forall τ e, (is_value e) -> (is_value (expr_ascend τ e)) . Declare Scope ladder_type_scope. Declare Scope ladder_expr_scope. Declare Custom Entry ladder_type. Declare Custom Entry ladder_expr. Notation "[ t ]" := t (t custom ladder_type at level 80) : ladder_type_scope. Notation "'∀' x ',' t" := (type_univ x t) (t custom ladder_type at level 80, in custom ladder_type at level 80, x constr). Notation "'<' σ τ '>'" := (type_spec σ τ) (in custom ladder_type at level 80, left associativity) : ladder_type_scope. Notation "'(' τ ')'" := τ (in custom ladder_type at level 70) : ladder_type_scope. Notation "σ '->' τ" := (type_fun σ τ) (in custom ladder_type at level 75, right associativity) : ladder_type_scope. Notation "σ '->morph' τ" := (type_morph σ τ) (in custom ladder_type at level 75, right associativity, τ at level 80) : ladder_type_scope. Notation "σ '~' τ" := (type_ladder σ τ) (in custom ladder_type at level 70, right associativity) : ladder_type_scope. Notation "'$' x '$'" := (type_id x%string) (in custom ladder_type at level 0, x constr) : ladder_type_scope. Notation "'%' x '%'" := (type_var x%string) (in custom ladder_type at level 0, x constr) : ladder_type_scope. Notation "[[ e ]]" := e (e custom ladder_expr at level 80) : ladder_expr_scope. Notation "'%' x '%'" := (expr_var x%string) (in custom ladder_expr at level 0, x constr) : ladder_expr_scope. Notation "'λ' x τ '↦' e" := (expr_tm_abs x τ e) (in custom ladder_expr at level 0, x constr, τ custom ladder_type at level 99, e custom ladder_expr at level 99). Notation "'Λ' t '↦' e" := (expr_ty_abs t e) (in custom ladder_expr at level 0, t constr, e custom ladder_expr at level 80). Open Scope ladder_type_scope. Open Scope ladder_expr_scope. Check [ ∀"α", (< $"Seq"$ %"α"% > ~ < $"List"$ %"α"% >) ]. Definition polymorphic_identity1 : expr_term := [[ Λ"T" ↦ λ"x"%"T"% ↦ %"x"% ]]. Definition polymorphic_identity2 : expr_term := [[ Λ"T" ↦ λ"y"%"T"% ↦ %"y"% ]]. Compute polymorphic_identity1. Close Scope ladder_type_scope. Close Scope ladder_expr_scope. End Terms.