(* This module defines the typing relation * where each expression is assigned a type. *) From Coq Require Import Strings.String. Require Import terms. Require Import subst. Require Import equiv. Require Import subtype. Require Import context. Require Import morph. (** Typing Derivation *) Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0). Inductive expr_type : context -> expr_term -> type_term -> Prop := | T_Var : forall Γ x τ, (context_contains Γ x τ) -> (Γ |- (expr_var x) \is τ) | T_Let : forall Γ s σ t τ x, (Γ |- s \is σ) -> ((ctx_assign x σ Γ) |- t \is τ) -> (Γ |- (expr_let x s t) \is τ) | T_TypeAbs : forall Γ e τ α, Γ |- e \is τ -> Γ |- (expr_ty_abs α e) \is (type_univ α τ) | T_TypeApp : forall Γ α e σ τ τ', Γ |- e \is (type_univ α τ) -> (type_subst1 α σ τ τ') -> Γ |- (expr_ty_app e σ) \is τ' | T_Abs : forall Γ x σ t τ, ((ctx_assign x σ Γ) |- t \is τ) -> (Γ |- (expr_abs x σ t) \is (type_fun σ τ)) | T_MorphAbs : forall Γ x σ e τ, ((ctx_assign x σ Γ) |- e \is τ) -> Γ |- (expr_morph x σ e) \is (type_morph σ τ) | T_App : forall Γ f a σ' σ τ, (Γ |- f \is (type_fun σ τ)) -> (Γ |- a \is σ') -> (Γ |- σ' ~> σ) -> (Γ |- (expr_app f a) \is τ) | T_MorphFun : forall Γ f σ τ, Γ |- f \is (type_morph σ τ) -> Γ |- f \is (type_fun σ τ) | T_Ascend : forall Γ e τ τ', (Γ |- e \is τ) -> (Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ)) | T_DescendImplicit : forall Γ x τ τ', Γ |- x \is τ -> (τ :<= τ') -> Γ |- x \is τ' | T_Descend : forall Γ x τ τ', Γ |- x \is τ -> (τ :<= τ') -> Γ |- (expr_descend τ' x) \is τ' where "Γ '|-' x '\is' τ" := (expr_type Γ x τ). Definition is_well_typed (e:expr_term) : Prop := forall Γ, exists τ, Γ |- e \is τ . Inductive translate_typing : context -> expr_term -> type_term -> expr_term -> Prop := | Expand_Var : forall Γ x τ, (Γ |- (expr_var x) \is τ) -> (translate_typing Γ (expr_var x) τ (expr_var x)) | Expand_Let : forall Γ x e e' t t' σ τ, (Γ |- e \is σ) -> ((ctx_assign x σ Γ) |- t \is τ) -> (translate_typing Γ e σ e') -> (translate_typing (ctx_assign x σ Γ) t τ t') -> (translate_typing Γ (expr_let x e t) τ (expr_let x e' t')) | Expand_TypeAbs : forall Γ α e e' τ, (Γ |- e \is τ) -> (translate_typing Γ e τ e') -> (translate_typing Γ (expr_ty_abs α e) (type_univ α τ) (expr_ty_abs α e')) | Expand_TypeApp : forall Γ e e' σ α τ, (Γ |- e \is (type_univ α τ)) -> (translate_typing Γ e τ e') -> (translate_typing Γ (expr_ty_app e τ) (type_subst α σ τ) (expr_ty_app e' τ)) | Expand_Abs : forall Γ x σ e e' τ, ((ctx_assign x σ Γ) |- e \is τ) -> (Γ |- (expr_abs x σ e) \is (type_fun σ τ)) -> (translate_typing (ctx_assign x σ Γ) e τ e') -> (translate_typing Γ (expr_abs x σ e) (type_fun σ τ) (expr_abs x σ e')) | Expand_MorphAbs : forall Γ x σ e e' τ, ((ctx_assign x σ Γ) |- e \is τ) -> (Γ |- (expr_abs x σ e) \is (type_fun σ τ)) -> (translate_typing (ctx_assign x σ Γ) e τ e') -> (translate_typing Γ (expr_morph x σ e) (type_morph σ τ) (expr_morph x σ e')) | Expand_App : forall Γ f f' a a' m σ τ σ', (Γ |- f \is (type_fun σ τ)) -> (Γ |- a \is σ') -> (Γ |- σ' ~> σ) -> (translate_typing Γ f (type_fun σ τ) f') -> (translate_typing Γ a σ' a') -> (translate_morphism_path Γ σ' σ m) -> (translate_typing Γ (expr_app f a) τ (expr_app f' (expr_app m a'))) | Expand_MorphFun : forall Γ f f' σ τ, (Γ |- f \is (type_morph σ τ)) -> (Γ |- f \is (type_fun σ τ)) -> (translate_typing Γ f (type_morph σ τ) f') -> (translate_typing Γ f (type_fun σ τ) f') | Expand_Ascend : forall Γ e e' τ τ', (Γ |- e \is τ) -> (Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ)) -> (translate_typing Γ e τ e') -> (translate_typing Γ (expr_ascend τ' e) (type_ladder τ' τ) (expr_ascend τ' e')) | Expand_Descend : forall Γ e e' τ τ', (Γ |- e \is τ) -> (τ :<= τ') -> (Γ |- e \is τ') -> (translate_typing Γ e τ e') -> (translate_typing Γ e τ' e') . (* Examples *) Example typing1 : ctx_empty |- [{ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% }] \is [< ∀"T", %"T"% -> %"T"% >]. Proof. intros. apply T_TypeAbs. apply T_Abs. apply T_Var. apply C_take. Qed. Example typing2 : ctx_empty |- [{ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% }] \is [< ∀"U", %"U"% -> %"U"% >]. Proof. intros. apply T_DescendImplicit with (τ:=[< ∀"T",(%"T"% -> %"T"%) >]). apply T_TypeAbs. apply T_Abs. apply T_Var. apply C_take. apply TSubRepr_Refl. apply TEq_Alpha. apply TAlpha_Rename. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_VarReplace. Qed. Example typing3 : ctx_empty |- [{ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"y"% }] \is [< ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) >]. Proof. intros. apply T_DescendImplicit with (τ:=[< ∀"T",∀"U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) >]). apply T_TypeAbs, T_TypeAbs, T_Abs. apply T_Abs. apply T_Var. apply C_take. apply TSubRepr_Refl. apply TEq_Trans with (y:= [< ∀"S",∀"U",(%"S"%->%"U"%->%"U"%) >] ). apply TEq_Alpha. apply TAlpha_Rename. apply TSubst_UnivReplace. discriminate. easy. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_Fun. apply TSubst_VarKeep. discriminate. apply TSubst_VarKeep. discriminate. apply TEq_Alpha. apply TAlpha_SubUniv. apply TAlpha_Rename. apply TSubst_Fun. apply TSubst_VarKeep. discriminate. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_VarReplace. Qed. Example typing4 : (is_well_typed [{ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"x"% }] ). Proof. unfold is_well_typed. exists [< ∀"T",∀"U",%"T"%->%"U"%->%"T"% >]. apply T_TypeAbs. apply T_TypeAbs. apply T_Abs. apply T_Abs. apply T_Var. apply C_shuffle, C_take. Qed. Open Scope ladder_expr_scope. Example typing5 : (ctx_assign "60" [< $"ℝ"$ >] (ctx_assign "360" [< $"ℝ"$ >] (ctx_assign "/" [< $"ℝ"$ -> $"ℝ"$ -> $"ℝ"$ >] ctx_empty))) |- [{ let "deg2turns" := (λ"x" $"Angle"$~$"Degrees"$~$"ℝ"$ ↦morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$)) in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) ) }] \is [< $"Angle"$~$"Turns"$~$"ℝ"$ >] . Proof. apply T_Let with (σ:=[< $"Angle"$~$"Degrees"$~$"ℝ"$ ->morph $"Angle"$~$"Turns"$~$"ℝ"$ >]). apply T_MorphAbs. apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Turns"$>] [<$"ℝ"$>])). 2: apply TSubRepr_Refl, TEq_LadderAssocLR. apply T_Ascend with (τ:=[<$"ℝ"$>]) (τ':=[<$"Angle"$~$"Turns"$>]). apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]). apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]). apply T_Var. apply C_shuffle. apply C_shuffle. apply C_shuffle. apply C_take. apply T_DescendImplicit with (τ := [< $"Angle"$~$"Degrees"$~$"ℝ"$ >]). apply T_Var. apply C_take. apply TSubRepr_Ladder. apply TSubRepr_Ladder. apply TSubRepr_Refl. apply TEq_Refl. apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl. apply T_Var. apply C_shuffle, C_shuffle, C_take. apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl. apply T_App with (σ:=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]) (σ':=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]). apply T_MorphFun. apply T_Var. apply C_take. apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Degrees"$>] [<$"ℝ"$>])). 2: apply TSubRepr_Refl, TEq_LadderAssocLR. apply T_Ascend. apply T_Var. apply C_shuffle. apply C_take. apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl. Qed. End Typing.