(** Assorted facts about lists. Author: Brian Aydemir. Implicit arguments are declared by default in this library. *) Set Implicit Arguments. Require Import Eqdep_dec. Require Import List. Require Import SetoidList. Require Import Sorting. Require Import Relations. (* ********************************************************************** *) (** * List membership *) Lemma not_in_cons : forall (A : Type) (ys : list A) x y, x <> y -> ~ In x ys -> ~ In x (y :: ys). Proof. induction ys; simpl; intuition. Qed. Lemma not_In_app : forall (A : Type) (xs ys : list A) x, ~ In x xs -> ~ In x ys -> ~ In x (xs ++ ys). Proof. intros A xs ys x H J K. destruct (in_app_or _ _ _ K); auto. Qed. Lemma elim_not_In_cons : forall (A : Type) (y : A) (ys : list A) (x : A), ~ In x (y :: ys) -> x <> y /\ ~ In x ys. Proof. intros. simpl in *. auto. Qed. Lemma elim_not_In_app : forall (A : Type) (xs ys : list A) (x : A), ~ In x (xs ++ ys) -> ~ In x xs /\ ~ In x ys. Proof. split; auto using in_or_app. Qed. (* ********************************************************************** *) (** * List inclusion *) Lemma incl_nil : forall (A : Type) (xs : list A), incl nil xs. Proof. unfold incl. intros A xs a H; inversion H. Qed. Lemma incl_trans : forall (A : Type) (xs ys zs : list A), incl xs ys -> incl ys zs -> incl xs zs. Proof. unfold incl; firstorder. Qed. Lemma In_incl : forall (A : Type) (x : A) (ys zs : list A), In x ys -> incl ys zs -> In x zs. Proof. unfold incl; auto. Qed. Lemma elim_incl_cons : forall (A : Type) (x : A) (xs zs : list A), incl (x :: xs) zs -> In x zs /\ incl xs zs. Proof. unfold incl. auto with datatypes. Qed. Lemma elim_incl_app : forall (A : Type) (xs ys zs : list A), incl (xs ++ ys) zs -> incl xs zs /\ incl ys zs. Proof. unfold incl. auto with datatypes. Qed. (* ********************************************************************** *) (** * Setoid facts *) Lemma InA_iff_In : forall (A : Set) x xs, InA (@eq A) x xs <-> In x xs. Proof. split. 2:auto using In_InA. induction xs as [ | y ys IH ]. intros H. inversion H. intros H. inversion H; subst; auto with datatypes. Qed. (* ********************************************************************* *) (** * Equality proofs for lists *) Section EqRectList. Variable A : Type. Variable eq_A_dec : forall (x y : A), {x = y} + {x <> y}. Lemma eq_rect_eq_list : forall (p : list A) (Q : list A -> Type) (x : Q p) (h : p = p), eq_rect p Q x p h = x. Proof with auto. intros. apply K_dec with (p := h)... decide equality. destruct (eq_A_dec a a0)... Qed. End EqRectList. (* ********************************************************************** *) (** * Decidable sorting and uniqueness of proofs *) Section DecidableSorting. Variable A : Set. Variable leA : relation A. Hypothesis leA_dec : forall x y, {leA x y} + {~ leA x y}. Theorem lelistA_dec : forall a xs, {lelistA leA a xs} + {~ lelistA leA a xs}. Proof. induction xs as [ | x xs IH ]; auto with datatypes. destruct (leA_dec a x); auto with datatypes. right. intros J. inversion J. auto. Qed. Theorem sort_dec : forall xs, {sort leA xs} + {~ sort leA xs}. Proof. induction xs as [ | x xs IH ]; auto with datatypes. destruct IH; destruct (lelistA_dec x xs); auto with datatypes. right. intros K. inversion K. auto. right. intros K. inversion K. auto. right. intros K. inversion K. auto. Qed. Section UniqueSortingProofs. Hypothesis eq_A_dec : forall (x y : A), {x = y} + {x <> y}. Hypothesis leA_unique : forall (x y : A) (p q : leA x y), p = q. Scheme lelistA_ind' := Induction for lelistA Sort Prop. Scheme sort_ind' := Induction for sort Sort Prop. Theorem lelistA_unique : forall (x : A) (xs : list A) (p q : lelistA leA x xs), p = q. Proof with auto. induction p using lelistA_ind'; intros q. (* case: nil_leA *) replace (nil_leA leA x) with (eq_rect _ (fun xs => lelistA leA x xs) (nil_leA leA x) _ (refl_equal (@nil A)))... generalize (refl_equal (@nil A)). pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ]. intros. rewrite eq_rect_eq_list... (* case: cons_sort *) replace (cons_leA leA x b l l0) with (eq_rect _ (fun xs => lelistA leA x xs) (cons_leA leA x b l l0) _ (refl_equal (b :: l)))... generalize (refl_equal (b :: l)). pattern (b :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ]. intros. inversion e; subst. rewrite eq_rect_eq_list... rewrite (leA_unique l0 l2)... Qed. Theorem sort_unique : forall (xs : list A) (p q : sort leA xs), p = q. Proof with auto. induction p using sort_ind'; intros q. (* case: nil_sort *) replace (nil_sort leA) with (eq_rect _ (fun xs => sort leA xs) (nil_sort leA) _ (refl_equal (@nil A)))... generalize (refl_equal (@nil A)). pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ]. intros. rewrite eq_rect_eq_list... (* case: cons_sort *) replace (cons_sort p l0) with (eq_rect _ (fun xs => sort leA xs) (cons_sort p l0) _ (refl_equal (a :: l)))... generalize (refl_equal (a :: l)). pattern (a :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ]. intros. inversion e; subst. rewrite eq_rect_eq_list... rewrite (lelistA_unique l0 l2). rewrite (IHp s)... Qed. End UniqueSortingProofs. End DecidableSorting. (* ********************************************************************** *) (** * Equality on sorted lists *) Section Equality_ext. Variable A : Set. Variable ltA : relation A. Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z. Hypothesis ltA_not_eqA : forall x y, ltA x y -> x <> y. Hypothesis ltA_eqA : forall x y z, ltA x y -> y = z -> ltA x z. Hypothesis eqA_ltA : forall x y z, x = y -> ltA y z -> ltA x z. Hint Resolve ltA_trans. Hint Immediate ltA_eqA eqA_ltA. Notation Inf := (lelistA ltA). Notation Sort := (sort ltA). Lemma not_InA_if_Sort_Inf : forall xs a, Sort xs -> Inf a xs -> ~ InA (@eq A) a xs. Proof. induction xs as [ | x xs IH ]; intros a Hsort Hinf H. inversion H. inversion H; subst. inversion Hinf; subst. assert (x <> x) by auto; intuition. inversion Hsort; inversion Hinf; subst. assert (Inf a xs) by eauto using InfA_ltA. assert (~ InA (@eq A) a xs) by auto. intuition. Qed. Lemma Sort_eq_head : forall x xs y ys, Sort (x :: xs) -> Sort (y :: ys) -> (forall a, InA (@eq A) a (x :: xs) <-> InA (@eq A) a (y :: ys)) -> x = y. Proof. intros x xs y ys SortXS SortYS H. inversion SortXS; inversion SortYS; subst. assert (Q3 : InA (@eq A) x (y :: ys)) by firstorder. assert (Q4 : InA (@eq A) y (x :: xs)) by firstorder. inversion Q3; subst; auto. inversion Q4; subst; auto. assert (ltA y x) by (refine (SortA_InfA_InA _ _ _ _ _ H6 H7 H1); auto). assert (ltA x y) by (refine (SortA_InfA_InA _ _ _ _ _ H2 H3 H4); auto). assert (y <> y) by eauto. intuition. Qed. Lemma Sort_InA_eq_ext : forall xs ys, Sort xs -> Sort ys -> (forall a, InA (@eq A) a xs <-> InA (@eq A) a ys) -> xs = ys. Proof. induction xs as [ | x xs IHxs ]; induction ys as [ | y ys IHys ]; intros SortXS SortYS H; auto. (* xs -> nil, ys -> y :: ys *) assert (Q : InA (@eq A) y nil) by firstorder. inversion Q. (* xs -> x :: xs, ys -> nil *) assert (Q : InA (@eq A) x nil) by firstorder. inversion Q. (* xs -> x :: xs, ys -> y :: ys *) inversion SortXS; inversion SortYS; subst. assert (x = y) by eauto using Sort_eq_head. cut (forall a, InA (@eq A) a xs <-> InA (@eq A) a ys). intros. assert (xs = ys) by auto. subst. auto. intros a; split; intros L. assert (Q2 : InA (@eq A) a (y :: ys)) by firstorder. inversion Q2; subst; auto. assert (Q5 : ~ InA (@eq A) y xs) by auto using not_InA_if_Sort_Inf. intuition. assert (Q2 : InA (@eq A) a (x :: xs)) by firstorder. inversion Q2; subst; auto. assert (Q5 : ~ InA (@eq A) y ys) by auto using not_InA_if_Sort_Inf. intuition. Qed. End Equality_ext.