(* This module defines the typing relation * where each expression is assigned a type. *) From Coq Require Import Strings.String. Require Import terms. Require Import subst. Require Import equiv. Require Import subtype. Include Terms. Include Subst. Include Equiv. Include Subtype. Module Typing. (** Typing Derivation *) Inductive context : Type := | ctx_assign : string -> type_term -> context -> context | ctx_empty : context . Inductive context_contains : context -> string -> type_term -> Prop := | C_take : forall (x:string) (X:type_term) (Γ:context), (context_contains (ctx_assign x X Γ) x X) | C_shuffle : forall x X y Y Γ, (context_contains Γ x X) -> (context_contains (ctx_assign y Y Γ) x X). Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0). Reserved Notation "Gamma '|-' x '\compatible' X" (at level 101, x at next level, X at level 0). Inductive expr_type : context -> expr_term -> type_term -> Prop := | T_Var : forall Γ x τ, (context_contains Γ x τ) -> (Γ |- (expr_var x) \is τ) | T_Let : forall Γ s (σ:type_term) t τ x, (Γ |- s \is σ) -> (Γ |- t \is τ) -> (Γ |- (expr_let x σ s t) \is τ) | T_TypeAbs : forall Γ (e:expr_term) (τ:type_term) α, Γ |- e \is τ -> Γ |- (expr_ty_abs α e) \is (type_univ α τ) | T_TypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term), Γ |- e \is (type_univ α τ) -> Γ |- (expr_ty_app e σ) \is (type_subst α σ τ) | T_Abs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term), (context_contains Γ x σ) -> Γ |- t \is τ -> Γ |- (expr_abs x σ t) \is (type_fun σ τ) | T_App : forall (Γ:context) (f:expr_term) (a:expr_term) (σ:type_term) (τ:type_term), Γ |- f \is (type_fun σ τ) -> Γ |- a \is σ -> Γ |- (expr_app f a) \is τ | T_MorphAbs : forall Γ x σ e τ, (context_contains Γ x σ) -> Γ |- e \is τ -> Γ |- (expr_morph x σ e) \is (type_morph σ τ) | T_MorphFun : forall Γ f σ τ, Γ |- f \is (type_morph σ τ) -> Γ |- f \is (type_fun σ τ) | T_Ascend : forall Γ e τ τ', (Γ |- e \is τ) -> (τ' :<= τ) -> (Γ |- (expr_ascend τ' e) \is τ') | T_Descend : forall Γ x τ τ', Γ |- x \is τ -> (τ :<= τ') -> Γ |- x \is τ' where "Γ '|-' x '\is' τ" := (expr_type Γ x τ). Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop := | TCompat_Native : forall Γ e τ, (Γ |- e \is τ) -> (Γ |- e \compatible τ) | TCompat_Let : forall Γ s (σ:type_term) t τ x, (Γ |- s \is σ) -> (context_contains Γ x σ) -> (Γ |- t \compatible τ) -> (Γ |- (expr_let x σ s t) \compatible τ) | T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term), Γ |- e \compatible (type_univ α τ) -> Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ) | TCompat_App : forall Γ f a σ τ, (Γ |- f \compatible (type_fun σ τ)) -> (Γ |- a \compatible σ) -> (Γ |- (expr_app f a) \compatible τ) | TCompat_Morph : forall Γ h x τ τ', (context_contains Γ h (type_morph τ τ')) -> (Γ |- x \compatible τ) -> (Γ |- x \compatible τ') | TCompat_Sub : forall Γ x τ τ', (Γ |- x \compatible τ) -> (τ ~<= τ') -> (Γ |- x \compatible τ') where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ). Definition is_well_typed (e:expr_term) : Prop := exists Γ τ, Γ |- e \compatible τ . Definition is_exactly_typed (e:expr_term) : Prop := exists Γ τ, Γ |- e \is τ . (* Examples *) Example typing1 : forall Γ, (context_contains Γ "x" [< %"T"% >]) -> Γ |- [{ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% }] \is [< ∀"T", %"T"% -> %"T"% >]. (* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *) Proof. intros. apply T_TypeAbs. apply T_Abs. apply H. apply T_Var. apply H. Qed. Example typing2 : forall Γ, (context_contains Γ "x" [< %"T"% >]) -> Γ |- [{ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% }] \is [< ∀"U", %"U"% -> %"U"% >]. Proof. intros. apply T_Descend with (τ:=[< ∀"T",(%"T"% -> %"T"%) >]). apply T_TypeAbs. apply T_Abs. apply H. apply T_Var. apply H. apply TSubRepr_Refl. apply TEq_Alpha. apply TAlpha_Rename. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_VarReplace. Qed. Example typing3 : forall Γ, (context_contains Γ "x" [< %"T"% >]) -> (context_contains Γ "y" [< %"U"% >]) -> Γ |- [{ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"y"% }] \is [< ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) >]. Proof. intros. apply T_Descend with (τ:=[< ∀"T",∀"U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) >]). apply T_TypeAbs, T_TypeAbs, T_Abs. apply H. apply T_Abs. apply H0. apply T_Var, H0. apply TSubRepr_Refl. apply TEq_Trans with (y:= [< ∀"S",∀"U",(%"S"%->%"U"%->%"U"%) >] ). apply TEq_Alpha. apply TAlpha_Rename. apply TSubst_UnivReplace. discriminate. easy. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_Fun. apply TSubst_VarKeep. discriminate. apply TSubst_VarKeep. discriminate. apply TEq_Alpha. apply TAlpha_SubUniv. apply TAlpha_Rename. apply TSubst_Fun. apply TSubst_VarKeep. discriminate. apply TSubst_Fun. apply TSubst_VarReplace. apply TSubst_VarReplace. Qed. Example typing4 : (is_well_typed [{ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"x"% }] ). Proof. unfold is_well_typed. exists (ctx_assign "x" [< %"T"% >] (ctx_assign "y" [< %"U"% >] ctx_empty)). exists [< ∀"T",∀"U",%"T"%->%"U"%->%"T"% >]. apply TCompat_Native. apply T_TypeAbs. apply T_TypeAbs. apply T_Abs. apply C_take. apply T_Abs. apply C_shuffle. apply C_take. apply T_Var. apply C_take. Qed. End Typing.