(* This module defines the typing relation * where each expression is assigned a type. *) From Coq Require Import Strings.String. Require Import terms. Require Import subst. Require Import equiv. Include Terms. Include Subst. Include Equiv. Module Typing. (** Subtyping *) Reserved Notation "s ':<=' t" (at level 50). Reserved Notation "s '~=~' t" (at level 50). Inductive is_syntactic_subtype : type_term -> type_term -> Prop := | S_Refl : forall t t', (t === t') -> (t :<= t') | S_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z) | S_SynRepr : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y) where "s ':<=' t" := (is_syntactic_subtype s t). Inductive is_semantic_subtype : type_term -> type_term -> Prop := | S_Synt : forall x y, (x :<= y) -> (x ~=~ y) | S_SemRepr : forall x y y', (type_ladder x y) ~=~ (type_ladder x y') where "s '~=~' t" := (is_semantic_subtype s t). Open Scope ladder_type_scope. Example sub0 : [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ] :<= [ < $"Seq"$ $"Char"$ > ] . Proof. apply S_SynRepr. apply S_Refl. apply L_Refl. Qed. Example sub1 : [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ] :<= [ < $"Seq"$ $"Char"$ > ] . Proof. set [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ]. set [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ]. set [ < $"Seq"$ $"Char"$ > ]. set (t0 === t). set (t :<= t0). set (t :<= t2). apply S_Trans with t1. apply S_Refl. Qed. (** Typing Derivation *) Inductive context : Type := | ctx_assign : string -> type_term -> context -> context | ctx_empty : context . Inductive context_contains : context -> string -> type_term -> Prop := | C_take : forall (x:string) (X:type_term) (Γ:context), (context_contains (ctx_assign x X Γ) x X) | C_shuffle : forall x X y Y (Γ:context), (context_contains Γ x X) -> (context_contains (ctx_assign y Y Γ) x X). Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0). Reserved Notation "Gamma '|-' x '\compatible' X" (at level 101, x at next level, X at level 0). Inductive expr_type : context -> expr_term -> type_term -> Prop := | T_Var : forall Γ x τ, (context_contains Γ x τ) -> (Γ |- x \is τ) | T_Let : forall Γ s (σ:type_term) t τ x, (Γ |- s \is σ) -> (Γ |- t \is τ) -> (Γ |- (expr_let x σ s t) \is τ) | T_TypeAbs : forall Γ (e:expr_term) (τ:type_term) α, Γ |- e \is τ -> Γ |- (expr_ty_abs α e) \is (type_univ α τ) | T_TypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term), Γ |- e \is (type_univ α τ) -> Γ |- (expr_ty_app e σ) \is (type_subst α σ τ) | T_Abs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term), (context_contains Γ x σ) -> Γ |- t \is τ -> Γ |- (expr_tm_abs x σ t) \is (type_fun σ τ) | T_App : forall (Γ:context) (f:expr_term) (a:expr_term) (σ:type_term) (τ:type_term), Γ |- f \is (type_fun σ τ) -> Γ |- a \is σ -> Γ |- (expr_tm_app f a) \is τ where "Γ '|-' x '\is' τ" := (expr_type Γ x τ). Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop := | T_Compatible : forall Γ x τ, (Γ |- x \is τ) -> (Γ |- x \compatible τ) where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ). Example typing1 : forall Γ, (context_contains Γ "x" (type_var "T")) -> Γ |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is (type_univ "T" (type_fun (type_var "T") (type_var "T"))). Proof. intros. apply T_TypeAbs. apply T_Abs. apply H. apply T_Var. apply H. Admitted. Example typing2 : ctx_empty |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is (type_univ "T" (type_fun (type_var "T") (type_var "T"))). Proof. apply T_TypeAbs. apply T_Abs. Admitted. End Typing.