ladder-calculus/coq/typing.v

223 lines
5.8 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* This module defines the typing relation
* where each expression is assigned a type.
*)
From Coq Require Import Strings.String.
Require Import terms.
Require Import subst.
Require Import equiv.
Require Import subtype.
Include Terms.
Include Subst.
Include Equiv.
Include Subtype.
Module Typing.
(** Typing Derivation *)
Inductive context : Type :=
| ctx_assign : string -> type_term -> context -> context
| ctx_empty : context
.
Inductive context_contains : context -> string -> type_term -> Prop :=
| C_take : forall (x:string) (X:type_term) (Γ:context),
(context_contains (ctx_assign x X Γ) x X)
| C_shuffle : forall x X y Y Γ,
(context_contains Γ x X) ->
(context_contains (ctx_assign y Y Γ) x X).
Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0).
Reserved Notation "Gamma '|-' x '\compatible' X" (at level 101, x at next level, X at level 0).
Inductive expr_type : context -> expr_term -> type_term -> Prop :=
| T_Var : forall Γ x τ,
(context_contains Γ x τ) ->
(Γ |- (expr_var x) \is τ)
| T_Let : forall Γ s (σ:type_term) t τ x,
(Γ |- s \is σ) ->
(Γ |- t \is τ) ->
(Γ |- (expr_let x σ s t) \is τ)
| T_TypeAbs : forall Γ (e:expr_term) (τ:type_term) α,
Γ |- e \is τ ->
Γ |- (expr_ty_abs α e) \is (type_univ α τ)
| T_TypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
Γ |- e \is (type_univ α τ) ->
Γ |- (expr_ty_app e σ) \is (type_subst α σ τ)
| T_Abs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term),
(context_contains Γ x σ) ->
Γ |- t \is τ ->
Γ |- (expr_abs x σ t) \is (type_fun σ τ)
| T_App : forall (Γ:context) (f:expr_term) (a:expr_term) (σ:type_term) (τ:type_term),
Γ |- f \is (type_fun σ τ) ->
Γ |- a \is σ ->
Γ |- (expr_app f a) \is τ
| T_MorphAbs : forall Γ x σ e τ,
(context_contains Γ x σ) ->
Γ |- e \is τ ->
Γ |- (expr_morph x σ e) \is (type_morph σ τ)
| T_MorphFun : forall Γ f σ τ,
Γ |- f \is (type_morph σ τ) ->
Γ |- f \is (type_fun σ τ)
| T_Ascend : forall Γ e τ τ',
(Γ |- e \is τ) ->
(τ' :<= τ) ->
(Γ |- (expr_ascend τ' e) \is τ')
| T_Descend : forall Γ x τ τ',
Γ |- x \is τ ->
(τ :<= τ') ->
Γ |- x \is τ'
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
| TCompat_Native : forall Γ e τ,
(Γ |- e \is τ) ->
(Γ |- e \compatible τ)
| TCompat_Let : forall Γ s (σ:type_term) t τ x,
(Γ |- s \is σ) ->
(context_contains Γ x σ) ->
(Γ |- t \compatible τ) ->
(Γ |- (expr_let x σ s t) \compatible τ)
| T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
Γ |- e \compatible (type_univ α τ) ->
Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ)
| TCompat_App : forall Γ f a σ τ,
(Γ |- f \compatible (type_fun σ τ)) ->
(Γ |- a \compatible σ) ->
(Γ |- (expr_app f a) \compatible τ)
| TCompat_Morph : forall Γ h x τ τ',
(context_contains Γ h (type_morph τ τ')) ->
(Γ |- x \compatible τ) ->
(Γ |- x \compatible τ')
| TCompat_Sub : forall Γ x τ τ',
(Γ |- x \compatible τ) ->
(τ ~<= τ') ->
(Γ |- x \compatible τ')
where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ).
Definition is_well_typed (e:expr_term) : Prop :=
exists Γ τ,
Γ |- e \compatible τ
.
Definition is_exactly_typed (e:expr_term) : Prop :=
exists Γ τ,
Γ |- e \is τ
.
(* Examples *)
Example typing1 :
forall Γ,
(context_contains Γ "x" [< %"T"% >]) ->
Γ |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "T", %"T"% -> %"T"% >].
(* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *)
Proof.
intros.
apply T_TypeAbs.
apply T_Abs.
apply H.
apply T_Var.
apply H.
Qed.
Example typing2 :
forall Γ,
(context_contains Γ "x" [< %"T"% >]) ->
Γ |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "U", %"U"% -> %"U"% >].
Proof.
intros.
apply T_Descend with (τ:=[< "T",(%"T"% -> %"T"%) >]).
apply T_TypeAbs.
apply T_Abs.
apply H.
apply T_Var.
apply H.
apply TSubRepr_Refl.
apply TEq_Alpha.
apply TAlpha_Rename.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_VarReplace.
Qed.
Example typing3 :
forall Γ,
(context_contains Γ "x" [< %"T"% >]) ->
(context_contains Γ "y" [< %"U"% >]) ->
Γ |- [{
Λ"T" Λ"U" λ"x" %"T"% λ"y" %"U"% %"y"%
}] \is [<
"S","T",(%"S"%->%"T"%->%"T"%)
>].
Proof.
intros.
apply T_Descend with (τ:=[< "T","U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< "S","T",(%"S"%->%"T"%->%"T"%) >]).
apply T_TypeAbs, T_TypeAbs, T_Abs.
apply H.
apply T_Abs.
apply H0.
apply T_Var, H0.
apply TSubRepr_Refl.
apply TEq_Trans with (y:= [< "S","U",(%"S"%->%"U"%->%"U"%) >] ).
apply TEq_Alpha.
apply TAlpha_Rename.
apply TSubst_UnivReplace. discriminate.
easy.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_Fun.
apply TSubst_VarKeep. discriminate.
apply TSubst_VarKeep. discriminate.
apply TEq_Alpha.
apply TAlpha_SubUniv.
apply TAlpha_Rename.
apply TSubst_Fun.
apply TSubst_VarKeep. discriminate.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_VarReplace.
Qed.
Example typing4 : (is_well_typed
[{ Λ"T" Λ"U" λ"x" %"T"% λ"y" %"U"% %"x"% }]
).
Proof.
unfold is_well_typed.
exists (ctx_assign "x" [< %"T"% >]
(ctx_assign "y" [< %"U"% >] ctx_empty)).
exists [< "T","U",%"T"%->%"U"%->%"T"% >].
apply TCompat_Native.
apply T_TypeAbs.
apply T_TypeAbs.
apply T_Abs.
apply C_take.
apply T_Abs.
apply C_shuffle. apply C_take.
apply T_Var.
apply C_take.
Qed.
End Typing.