88 lines
2.3 KiB
Coq
88 lines
2.3 KiB
Coq
From Coq Require Import Strings.String.
|
||
Require Import terms.
|
||
Require Import subst.
|
||
Require Import typing.
|
||
|
||
Include Terms.
|
||
Include Subst.
|
||
Include Typing.
|
||
|
||
Module Smallstep.
|
||
|
||
Reserved Notation " s '-->α' t " (at level 40).
|
||
Reserved Notation " s '-->β' t " (at level 40).
|
||
|
||
Inductive expr_alpha : expr_term -> expr_term -> Prop :=
|
||
| EAlpha_Rename : forall x x' τ e,
|
||
(expr_abs x τ e) -->α (expr_abs x' τ (expr_subst x (expr_var x') e))
|
||
|
||
| EAlpha_TyRename : forall α α' e,
|
||
(expr_ty_abs α e) -->α (expr_ty_abs α' (expr_specialize α (type_var α') e))
|
||
|
||
| EAlpha_SubAbs : forall x τ e e',
|
||
(e -->α e') ->
|
||
(expr_abs x τ e) -->α (expr_abs x τ e')
|
||
|
||
| EAlpha_SubTyAbs : forall α e e',
|
||
(e -->α e') ->
|
||
(expr_ty_abs α e) -->α (expr_ty_abs α e')
|
||
|
||
| EAlpha_SubApp1 : forall e1 e1' e2,
|
||
(e1 -->α e1') ->
|
||
(expr_app e1 e2) -->α (expr_app e1' e2)
|
||
|
||
| EAlpha_SubApp2 : forall e1 e2 e2',
|
||
(e2 -->α e2') ->
|
||
(expr_app e1 e2) -->α (expr_app e1 e2')
|
||
|
||
where "s '-->α' t" := (expr_alpha s t).
|
||
|
||
|
||
Example a1 : polymorphic_identity1 -->α polymorphic_identity2.
|
||
Proof.
|
||
unfold polymorphic_identity1.
|
||
unfold polymorphic_identity2.
|
||
apply EAlpha_SubTyAbs.
|
||
apply EAlpha_Rename.
|
||
Qed.
|
||
|
||
|
||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||
| E_App1 : forall e1 e1' e2,
|
||
e1 -->β e1' ->
|
||
(expr_app e1 e2) -->β (expr_app e1' e2)
|
||
|
||
| E_App2 : forall v1 e2 e2',
|
||
(is_value v1) ->
|
||
e2 -->β e2' ->
|
||
(expr_app v1 e2) -->β (expr_app v1 e2')
|
||
|
||
| E_TypApp : forall e e' τ,
|
||
e -->β e' ->
|
||
(expr_ty_app e τ) -->β (expr_ty_app e' τ)
|
||
|
||
| E_TypAppLam : forall x e a,
|
||
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
|
||
|
||
| E_AppLam : forall x τ e a,
|
||
(expr_app (expr_abs x τ e) a) -->β (expr_subst x a e)
|
||
|
||
| E_AppMorph : forall x τ e a,
|
||
(expr_app (expr_morph x τ e) a) -->β (expr_subst x a e)
|
||
|
||
| E_AppLet : forall x t e a,
|
||
(expr_let x t a e) -->β (expr_subst x a e)
|
||
|
||
where "s '-->β' t" := (beta_step s t).
|
||
|
||
Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
|
||
| Multi_Refl : forall (x : X), multi R x x
|
||
| Multi_Step : forall (x y z : X),
|
||
R x y ->
|
||
multi R y z ->
|
||
multi R x z.
|
||
|
||
Notation " s -->α* t " := (multi expr_alpha s t) (at level 40).
|
||
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
|
||
|
||
End Smallstep.
|