428 lines
9.3 KiB
Coq
428 lines
9.3 KiB
Coq
From Coq Require Import Strings.String.
|
||
Require Import terms.
|
||
Require Import subst.
|
||
Require Import equiv.
|
||
Require Import subtype.
|
||
Require Import context.
|
||
Require Import morph.
|
||
Require Import smallstep.
|
||
Require Import typing.
|
||
|
||
Lemma typing_weakening : forall Γ e τ x σ,
|
||
(Γ |- e \is τ) ->
|
||
((ctx_assign x σ Γ) |- e \is τ)
|
||
.
|
||
Proof.
|
||
intros.
|
||
induction H.
|
||
|
||
- apply T_Var.
|
||
apply C_shuffle.
|
||
apply H.
|
||
|
||
- apply T_Let with (σ:=σ0).
|
||
apply IHexpr_type1.
|
||
|
||
admit.
|
||
Admitted.
|
||
Lemma map_type : forall Γ,
|
||
Γ |- [{ %"map"% }] \is [<
|
||
∀"σ",∀"τ", (%"σ"% -> %"τ"%) -> [%"σ"%] -> [%"τ"%]
|
||
>].
|
||
Proof.
|
||
Admitted.
|
||
|
||
Lemma morphism_path_solves_type : forall Γ τ τ' m,
|
||
(translate_morphism_path Γ τ τ' m) ->
|
||
Γ |- m \is (type_morph τ τ')
|
||
.
|
||
Proof.
|
||
intros.
|
||
induction H.
|
||
|
||
(* Sub *)
|
||
apply T_MorphAbs.
|
||
apply T_Descend with (τ:=τ).
|
||
apply T_Var.
|
||
apply C_take.
|
||
apply H.
|
||
|
||
(* Lift *)
|
||
apply T_MorphAbs.
|
||
apply T_Ascend.
|
||
apply T_App with (σ':=τ) (σ:=τ).
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply IHtranslate_morphism_path.
|
||
apply T_Descend with (τ:=(type_ladder σ τ)).
|
||
apply T_Var.
|
||
apply C_take.
|
||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||
apply id_morphism_path.
|
||
|
||
(* Single *)
|
||
apply T_Var.
|
||
apply H.
|
||
|
||
(* Chain *)
|
||
apply T_MorphAbs.
|
||
apply T_App with (σ':=τ') (σ:=τ') (τ:=τ'').
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply IHtranslate_morphism_path2.
|
||
|
||
apply T_App with (σ':=τ) (σ:=τ) (τ:=τ').
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply IHtranslate_morphism_path1.
|
||
|
||
apply T_Var.
|
||
apply C_take.
|
||
apply id_morphism_path.
|
||
apply id_morphism_path.
|
||
|
||
(* Map Sequence *)
|
||
apply T_MorphAbs.
|
||
apply T_App with (σ':=(type_spec (type_id "Seq") τ)) (σ:=(type_spec (type_id "Seq") τ)).
|
||
apply T_App with (σ':=(type_fun τ τ')) (σ:=(type_fun τ τ')).
|
||
|
||
set (k:=[< (%"σ"% -> %"τ"%) -> <$"Seq"$ %"σ"%> -> <$"Seq"$ %"τ"%> >]).
|
||
set (k1:=[< (τ -> %"τ"%) -> <$"Seq"$ τ> -> <$"Seq"$ %"τ"%> >]).
|
||
set (k2:=[< (τ -> τ') -> <$"Seq"$ τ> -> <$"Seq"$ τ'> >]).
|
||
|
||
set (P:=(type_subst "τ" τ' k1) = k2).
|
||
|
||
(* apply T_TypeApp with (α:="τ"%string) (τ:=k2).*)
|
||
(* apply T_TypeApp with (α:="τ"%string) (τ:=(type_subst "τ" τ' k1)).*)
|
||
(*
|
||
apply map_type.
|
||
|
||
apply TSubst_UnivReplace.
|
||
admit.
|
||
admit.
|
||
|
||
apply TSubst_UnivReplace.
|
||
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply IHtranslate_morphism_path.
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
apply T_Var.
|
||
apply C_take.
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
*)
|
||
Admitted.
|
||
|
||
(* reduction step preserves well-typedness *)
|
||
Lemma preservation : forall Γ e e' τ,
|
||
~(is_value e) ->
|
||
(Γ |- e \is τ) ->
|
||
(e -->β e') ->
|
||
(Γ |- e' \is τ)
|
||
.
|
||
Proof.
|
||
intros.
|
||
induction e.
|
||
|
||
(* `e` is Variable *)
|
||
contradict H.
|
||
apply V_Abs, VAbs_Var.
|
||
|
||
(* `e` is Type-Abstraction *)
|
||
contradict H.
|
||
apply V_Abs, VAbs_TypAbs.
|
||
|
||
(* `e` is Type-Application *)
|
||
admit.
|
||
|
||
(* `e` is Abstraction *)
|
||
contradict H.
|
||
apply V_Abs, VAbs_Abs.
|
||
|
||
(* `e` is morphism *)
|
||
contradict H.
|
||
apply V_Abs, VAbs_Morph.
|
||
|
||
(* `e` is Application *)
|
||
admit.
|
||
|
||
(* `e` is Let-Binding *)
|
||
admit.
|
||
|
||
(* `e` is Ascension *)
|
||
admit.
|
||
|
||
(* `e` is Descension *)
|
||
admit.
|
||
Admitted.
|
||
|
||
(* translation of expression preserves typing *)
|
||
Lemma translation_preservation : forall Γ e e' τ,
|
||
(Γ |- e \is τ) ->
|
||
(translate_typing Γ e τ e') ->
|
||
(Γ |- e' \is τ)
|
||
.
|
||
Proof.
|
||
intros.
|
||
induction H0.
|
||
|
||
(* e is Variable *)
|
||
apply H.
|
||
|
||
(* e is Let-Binding *)
|
||
apply T_Let with (τ:=τ) (σ:=σ).
|
||
apply IHtranslate_typing1.
|
||
apply H0.
|
||
apply IHtranslate_typing2.
|
||
apply H1.
|
||
|
||
(* e is Type-Abstraction *)
|
||
apply T_TypeAbs.
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
|
||
(* e is Type-Application *)
|
||
admit.
|
||
|
||
(* e is Abstraction *)
|
||
apply T_Abs.
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
|
||
(* e is Morphism-Abstraction *)
|
||
apply T_MorphAbs.
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
|
||
(* e is Application *)
|
||
apply T_App with (σ':=σ) (σ:=σ) (τ:=τ).
|
||
apply IHtranslate_typing1.
|
||
apply H0.
|
||
|
||
induction H3.
|
||
|
||
(* Repr-Subtype *)
|
||
apply T_App with (σ':=τ0) (σ:=τ0) (τ:=τ').
|
||
apply T_MorphFun.
|
||
apply T_MorphAbs.
|
||
apply T_Descend with (τ:=τ0).
|
||
apply T_Var.
|
||
apply C_take.
|
||
apply H3.
|
||
|
||
apply T_DescendImplicit with (τ:=τ0).
|
||
apply IHtranslate_typing2.
|
||
apply H1.
|
||
apply TSubRepr_Refl, TEq_Refl.
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
(* Lifted Morphism *)
|
||
apply T_App with (σ':=(type_ladder σ τ0)) (σ:=(type_ladder σ τ0)) (τ:=(type_ladder σ τ')).
|
||
apply T_MorphFun.
|
||
apply T_MorphAbs.
|
||
apply T_Ascend with (τ:=τ').
|
||
apply T_App with (σ':=τ0) (σ:=τ0) (τ:=τ').
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply morphism_path_solves_type.
|
||
apply H4.
|
||
|
||
apply T_Descend with (τ:=(type_ladder σ τ0)).
|
||
apply T_Var.
|
||
apply C_take.
|
||
|
||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
apply IHtranslate_typing2.
|
||
apply H1.
|
||
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
(* argument coecrion is single function variable *)
|
||
apply T_App with (σ':= τ0) (σ:=τ0).
|
||
apply T_MorphFun.
|
||
apply T_Var.
|
||
apply H3.
|
||
apply IHtranslate_typing2.
|
||
apply H1.
|
||
(* lemma: every context implies identity morphism *)
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
(* argument coecrion is chain of coercions *)
|
||
apply T_App with (σ':=τ0) (σ:=τ0).
|
||
apply T_MorphFun.
|
||
apply T_MorphAbs.
|
||
apply T_App with (σ':=τ') (σ:=τ').
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply morphism_path_solves_type.
|
||
apply H3_0.
|
||
apply T_App with (σ':=τ0) (σ:=τ0).
|
||
apply T_MorphFun.
|
||
apply typing_weakening.
|
||
apply morphism_path_solves_type.
|
||
apply H3_.
|
||
apply T_Var.
|
||
apply C_take.
|
||
(* lemma: every context implies identity morphism *)
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
(* lemma: every context implies identity morphism *)
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
apply IHtranslate_typing2.
|
||
apply H1.
|
||
(* lemma: every context implies identity morphism *)
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
(* argument coercion is is map *)
|
||
(*
|
||
apply T_App with (σ':=(type_spec (type_id "Seq") τ0)) (σ:=(type_spec (type_id "Seq") τ0)).
|
||
apply T_MorphFun.
|
||
apply T_MorphAbs.
|
||
apply T_App with (σ':=(type_spec (type_id "Seq") τ0)) (σ:=(type_spec (type_id "Seq") τ0)).
|
||
apply T_App with (σ':=(type_fun τ0 τ')) (σ:=(type_fun τ0 τ')).
|
||
apply T_TypeApp with
|
||
(α:="T2"%string)
|
||
(e:=(expr_ty_app (expr_var "map") τ0))
|
||
(τ:=(type_fun
|
||
(type_fun τ0 τ')
|
||
(type_fun
|
||
(type_spec (type_id "Seq") τ0)
|
||
(type_spec (type_id "Seq") τ')))).
|
||
|
||
apply T_TypeApp with
|
||
(α:="T1"%string)
|
||
(e:=(expr_var "map"))
|
||
(τ:=(type_univ "T2"
|
||
(type_fun
|
||
(type_fun τ0 τ')
|
||
(type_fun
|
||
(type_spec (type_id "Seq") (type_var "T1"))
|
||
(type_spec (type_id "Seq") (type_var "T2")))))).
|
||
|
||
apply T_Var.
|
||
admit.
|
||
|
||
apply TSubst_VarReplace.
|
||
apply TSubst_UnivReplace.
|
||
*)
|
||
admit.
|
||
|
||
(* argument coercion *)
|
||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||
|
||
(* end case `e application` *)
|
||
|
||
(* e is Morphism *)
|
||
apply T_MorphFun.
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
|
||
(* e is Ascension *)
|
||
apply T_Ascend.
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
|
||
(* e is Desecension *)
|
||
apply T_Descend with (τ:=τ).
|
||
apply IHtranslate_typing.
|
||
apply H0.
|
||
apply H1.
|
||
Admitted.
|
||
|
||
(* e is stuck when it is neither a value, nor can it be reduced *)
|
||
Definition is_stuck (e:expr_term) : Prop :=
|
||
~(is_value e) ->
|
||
~(exists e', e -->β e')
|
||
.
|
||
|
||
(* the translation any well typed term is not stuck *)
|
||
Lemma progress :
|
||
forall Γ e τ e',
|
||
(Γ |- e \is τ) ->
|
||
(translate_typing Γ e τ e') ->
|
||
~(is_stuck e')
|
||
.
|
||
Proof.
|
||
Admitted.
|
||
|
||
(* every well-typed expression is translated,
|
||
* such that it be reduced to a value
|
||
*)
|
||
Theorem soundness :
|
||
forall Γ e e' τ,
|
||
(Γ |- e \is τ) ->
|
||
(translate_typing Γ e τ e') ->
|
||
(exists v, (e' -->β* v) /\ (is_value v) /\ (Γ |- v \is τ))
|
||
.
|
||
Proof.
|
||
intros.
|
||
|
||
(* `e` is Variable *)
|
||
induction H0.
|
||
exists (expr_var x).
|
||
split. apply Multi_Refl.
|
||
split. apply V_Abs,VAbs_Var.
|
||
apply H.
|
||
|
||
(* `e` is Let-Binding *)
|
||
exists (expr_subst x e' t').
|
||
split.
|
||
apply Multi_Step with (y:=(expr_subst x e' t')).
|
||
apply E_Let with (x:=x) (a:=e') (e:=t').
|
||
apply Multi_Refl.
|
||
(*
|
||
split.
|
||
unfold expr_subst.
|
||
induction t'.
|
||
|
||
exists (expr_subst x e' (expr_var s)).
|
||
split.
|
||
unfold expr_subst.
|
||
apply E_Let.
|
||
*)
|
||
admit.
|
||
|
||
(* `e` is Type-Abstraction *)
|
||
exists (expr_ty_abs α e').
|
||
split.
|
||
apply Multi_Refl.
|
||
split.
|
||
apply V_Abs, VAbs_TypAbs.
|
||
apply T_TypeAbs.
|
||
apply translation_preservation with (e:=e).
|
||
apply H0.
|
||
apply H1.
|
||
|
||
(* `e` is Type-Application *)
|
||
admit.
|
||
|
||
(* `e`is Abstraction *)
|
||
exists (expr_abs x σ e').
|
||
split. apply Multi_Refl.
|
||
split. apply V_Abs, VAbs_Abs.
|
||
apply T_Abs.
|
||
apply translation_preservation with (e:=e).
|
||
apply H0.
|
||
apply H2.
|
||
|
||
(* `e` is Morphism Abstraction *)
|
||
exists (expr_morph x σ e').
|
||
split. apply Multi_Refl.
|
||
split. apply V_Abs, VAbs_Morph.
|
||
apply T_MorphAbs.
|
||
apply translation_preservation with (e:=e).
|
||
apply H0.
|
||
apply H2.
|
||
|
||
(* `e` is Application *)
|
||
admit.
|
||
admit.
|
||
|
||
(* `e` is Ascension *)
|
||
admit.
|
||
|
||
(* `e` is Descension *)
|
||
admit.
|
||
Admitted.
|
||
|