51 lines
1.3 KiB
Coq
51 lines
1.3 KiB
Coq
From Coq Require Import Strings.String.
|
||
Require Import terms.
|
||
Require Import subst.
|
||
|
||
Include Terms.
|
||
Include Subst.
|
||
|
||
Module Smallstep.
|
||
|
||
Reserved Notation " s '-->α' t " (at level 40).
|
||
Reserved Notation " s '-->β' t " (at level 40).
|
||
Reserved Notation " s '-->δ' t " (at level 40).
|
||
|
||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||
| E_AppLeft : forall e1 e1' e2,
|
||
e1 -->β e1' ->
|
||
(expr_tm_app e1 e2) -->β (expr_tm_app e1' e2)
|
||
|
||
| E_AppRight : forall e1 e2 e2',
|
||
e2 -->β e2' ->
|
||
(expr_tm_app e1 e2) -->β (expr_tm_app e1 e2')
|
||
|
||
| E_AppTmAbs : forall x τ e a,
|
||
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e)
|
||
|
||
| E_AppTyAbs : forall x e a,
|
||
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
|
||
|
||
| E_AppLet : forall x t e a,
|
||
(expr_let x t a e) -->β (expr_subst x a e)
|
||
|
||
where "s '-->β' t" := (beta_step s t).
|
||
|
||
(*
|
||
Inductive multi {X : Type} (R : relation X) : relation X :=
|
||
| multi_refl : forall (x : X), multi R x x
|
||
| multi_step : forall (x y z : X),
|
||
R x y ->
|
||
multi R y z ->
|
||
multi R x z.
|
||
|
||
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
|
||
*)
|
||
|
||
(*
|
||
Inductive delta_expand : expr_term -> expr_term -> Prop :=
|
||
| E_ImplicitCast
|
||
(expr_tm_app e1 e2)
|
||
*)
|
||
|
||
End Smallstep.
|