add initial ldmc variant for random-sensor

This commit is contained in:
Michael Sippel 2025-03-19 17:29:57 +01:00
parent cbee09be85
commit 76e3369844
Signed by: senvas
GPG key ID: F96CF119C34B64A6
5 changed files with 345 additions and 0 deletions

View file

@ -0,0 +1,25 @@
#!/bin/sh
RPC_HOST="localhost"
RPC_PORT="8070"
RPC_TAG="0"
echo -n ${RPC_TAG} \
| morph " RpcTag ~
~ <PosInt 10 BigEndian>
~ < Seq~<ValueTerminated 0>
<Digit 10>
~ Char ~ Ascii ~ x86.UInt8
>" \
" RpcTag ~
~ x86.UInt64" \
| nc ${RPC_HOST} ${RPC_PORT} \
| morph " TimePoint
~ <TimeSince UnixEpoch>
~ Duration ~ Seconds
~ ~ <QuantizedLinear 0 1 1000>
~ ~ x86.UInt64" \
" TimePoint
~ ISO8601
~ <Seq Char~Unicode> ~ UTF-8
~ <Seq~<ValueTerminated 0> x86.UInt8>"

View file

@ -0,0 +1,6 @@
project('random-sensor-ldmc', 'cpp',
default_options: ['cpp_std=c++20'])
executable('random-sensor-ldmc',
['random-sensor.cpp']
)

View file

@ -0,0 +1,283 @@
#include <iostream>
#include <chrono>
#include <cmath>
#include <random>
#include <semaphore>
#include <google/protobuf/arena.h>
#include <thread>
struct StatusRequest {
};
struct SensorStatus {
uint64_t online_since;
uint32_t battery_charge;
uint32_t battery_capacity;
uint32_t max_sampling_rate;
uint32_t cur_sampling_rate;
uint32_t max_chunk_size;
uint32_t cur_chunk_size;
uint32_t n_chunk_capacity;
uint32_t n_full_data_chunks;
uint32_t n_empty_data_chunks;
};
struct SetSamplingPeriodRequest {
uint32_t new_sampling_period;
};
enum SetSamplingPeriodResult {
SAMPLING_PERIOD_OK,
SAMPLING_PERIOD_OUT_OF_RANGE
};
struct PopDataChunkRequest {
};
struct DataChunk {
uint64_t begin;
uint32_t sampling_period;
float temperature_data[];
};
template < size_t T_Capacity >
struct RandomSensor
{
private:
std::chrono::time_point<std::chrono::high_resolution_clock> online_since;
std::chrono::duration<uint64_t, std::milli> period_duration;
uint32_t chunk_size;
uint32_t next_free;
uint32_t next_full;
float bat_charge;
std::counting_semaphore<> sem_full;
std::counting_semaphore<> sem_free;
float data[ T_Capacity ];
std::thread sensor_thread;
void generate_value()
{
sem_free.acquire();
data[ next_free ] = (float) next_free / 100.0;
next_free = (next_free + 1) % T_Capacity;
sem_full.release();
}
public:
RandomSensor()
: online_since(std::chrono::high_resolution_clock::now())
, period_duration( 10 )
, chunk_size( 8192 )
, next_free( 0 )
, next_full( 0 )
, bat_charge( 8200.0 )
, sem_full( 0 )
, sem_free( T_Capacity )
, sensor_thread([&] {
while(bat_charge > 0) {
generate_value();
bat_charge -= 0.01;
std::this_thread::sleep_for( period_duration );
}
})
{}
~RandomSensor() {
sensor_thread.join();
}
uint32_t n_chunks_capacity() const {
return T_Capacity / chunk_size;
}
uint32_t n_full_chunks() const {
return (( next_free - next_full ) % T_Capacity) / chunk_size;
}
uint32_t n_empty_chunks() const {
return n_chunks_capacity() - n_full_chunks();
}
void get_status(
StatusRequest const * request,
SensorStatus * status
) {
status->online_since = std::chrono::duration_cast<std::chrono::milliseconds>(online_since.time_since_epoch()).count();
status->battery_capacity = 8200;
status->battery_charge = bat_charge;
status->max_sampling_rate = 10;
status->cur_sampling_rate = std::chrono::duration_cast<std::chrono::milliseconds>(period_duration).count();
status->cur_chunk_size = chunk_size;
status->n_chunk_capacity = n_chunks_capacity();
status->n_full_data_chunks = n_full_chunks();
status->n_empty_data_chunks = n_empty_chunks();
}
void set_sampling_period(
SetSamplingPeriodRequest const * request,
SetSamplingPeriodResult * result
) {
*result = SAMPLING_PERIOD_OK;
}
void pop_data_chunk(
PopDataChunkRequest const * request,
DataChunk * data_chunk
) {
}
};
#include <iostream>
#include <string>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <cstring>
enum RpcTag {
GET_STATUS = 0,
SET_SAMPLING_PERIOD,
POP_DATA_CHUNK
};
struct RpcService {
private:
uint32_t port;
RandomSensor< 1048576 > & sensor;
public:
RpcService(
uint32_t port,
RandomSensor< 1048576 > & sensor
) :port(port), sensor(sensor)
{
}
void handle_client(int client_sock) {
char request_buffer[1024];
ssize_t bytes_received;
// Receive data from client
bytes_received = recv(client_sock, request_buffer, sizeof(request_buffer), 0);
if (bytes_received == -1) {
std::cerr << "Failed to receive data" << std::endl;
return;
}
printf("received %lu bytes:\n", bytes_received);
for( size_t i = 0; i < bytes_received;)
{
printf("%4lx : ", i);
for( size_t col = 0; col < 8; ++col ) {
printf("%2x ", request_buffer[i++]);
}
printf("\n");
}
if (bytes_received >= 8 ) {
RpcTag * tag = (RpcTag*) request_buffer;
switch( *tag ) {
case GET_STATUS: {
printf("RPC call get_status()\n");
StatusRequest * request = (StatusRequest * ) (request_buffer + sizeof(RpcTag));
SensorStatus status;
sensor.get_status(request, &status);
send(client_sock, (char*)&status, sizeof(status), 0);
break;
}
case SET_SAMPLING_PERIOD: {
SetSamplingPeriodRequest * request = (SetSamplingPeriodRequest * ) (request_buffer + sizeof(RpcTag));
printf("RPC call set_sampling_period()\n");
SetSamplingPeriodResult result;
sensor.set_sampling_period(request, &result);
send(client_sock, (char*)&result, sizeof(result), 0);
break;
}
case POP_DATA_CHUNK: {
PopDataChunkRequest * request = (PopDataChunkRequest * ) (request_buffer + sizeof(RpcTag));
printf("RPC call pop_data_chunk()\n");
DataChunk data_chunk;
sensor.pop_data_chunk(request, &data_chunk);
send(client_sock, (char*)&data_chunk, sizeof(data_chunk), 0);
break;
}
default: {
std::string response("invalid RPC");
send(client_sock, response.c_str(), response.length(), 0);
}
}
}
}
int run() {
int server_sock, client_sock;
struct sockaddr_in server_addr, client_addr;
socklen_t addr_len = sizeof(client_addr);
// Create socket
server_sock = socket(AF_INET, SOCK_STREAM, 0);
if (server_sock == -1) {
std::cerr << "Failed to create socket" << std::endl;
return 1;
}
// Set up server address
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = INADDR_ANY;
server_addr.sin_port = htons(port);
// Bind socket to the address and port
if (bind(server_sock, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) {
std::cerr << "Failed to bind socket" << std::endl;
return 1;
}
// Listen for incoming connections
if (listen(server_sock, 3) == -1) {
std::cerr << "Failed to listen on socket" << std::endl;
return 1;
}
std::cout << "Server listening on port " << port << "..." << std::endl;
// Accept and handle client connections
while (true) {
client_sock = accept(server_sock, (struct sockaddr*)&client_addr, &addr_len);
if (client_sock == -1) {
std::cerr << "Failed to accept connection" << std::endl;
continue;
}
std::cout << "Client connected!" << std::endl;
handle_client(client_sock);
// Close the client socket after handling the request
close(client_sock);
}
// Close the server socket
close(server_sock);
}
};
int main( int argc, char* argv[] ) {
RandomSensor< 1048576 > sensor;
RpcService service(8070, sensor);
return service.run();
}

View file

@ -0,0 +1,30 @@
include "../sensor.lt";
type native.SensorStatus = SensorStatus ~ {
online_since : TimePoint ~ <TimeSince UnixEpoch> ~ Milliseconds ~ ~ native.UInt64 ;
battery_charge : Energy ~ mAh ~ native.UInt32 ;
battery_capacity : Energy ~ mAh ~ native.UInt32 ;
min_sampling_period : Duration ~ Milliseconds ~ native.UInt32 ;
cur_sampling_period : Duration ~ Milliseconds ~ native.UInt32 ;
max_chunk_size : ~ native.UInt32 ;
cur_chunk_size : ~ native.UInt32 ;
n_chunk_capacity : ~ native.UInt32 ;
n_full_data_chunks : ~ native.UInt32 ;
n_empty_data_chunks : ~ native.UInt32 ;
} ;
type native.DataChunk = DataChunk ~ {
begin : TimePoint ~ <TimeSince UnixEpoch> ~ Milliseconds ~ native.UInt64 ;
data : [~<LengthPrefix x86.UInt32>
Temperature
~ Celsius
~
~ native.Float64
] ;
} ;
type native.Sensor = Sensor ~ {
get_status : {} -> InternSensorStatus ;
set_sampling_period : Duration~Milliseconds~UInt32 -> (Ok | OutOfRange)~Byte ;
pop_data_chunk : {} -> InternDataChunk ;
} ;

View file

@ -15,6 +15,7 @@ trait SensorStatus = {
trait DataChunk = {
begin : TimePoint ;
sampling_period: Duration ;
data : [ Temperature ] ;
}