ladder-calculus/beamer/lc-beamer/example.tex

455 lines
12 KiB
TeX
Raw Normal View History

2024-09-19 14:17:48 +02:00
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage{formal-grammar}
\usepackage[dvipsnames]{xcolor}
\usepackage{mathpartir}
\usepackage{stmaryrd}
\newcommand{\metavariable}[1]{\textcolor{teal}{#1}}
\newcommand{\typeterminal}[1]{\textcolor{brown}{#1}}
\newcommand{\exprterminal}[1]{\textcolor{Sepia}{#1}}
\title{A functional core calculus with ladder-types}
%\date[ISPN 80]{27th International Symposium of Prime Numbers}
\author[Euclid]{Michael Sippel \texttt{michael.sippel@mailbox.tu-dresden.de}\inst{1}}
\institute{\inst{1} Technische Universität Dresden}
\usetheme{ccc}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Type Systems}
\framesubtitle{Tension between Safety and Flexibility}
\begin{itemize}
\item<1-> Goal: eliminate undefined behaviour,
facilitate abstract code
\item<2-> simple types are overly restrictive,
loss of low level control
\item<3-|alert@3> polymorphism
(regain flexibility in type-safe way)
\begin{itemize}
\item<4-> parametric polymorphism (generics)
\item<4-> subtype polymorphism (inheritance / coercions)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{How to get fast code?}
\framesubtitle{Requirements for a type system}
\begin{itemize}
\item<1-> algorithmic optimization
\begin{itemize}
\item see which methods are used most frequently
\item switch structures to reduce complexity there
\item identify special cases
\end{itemize}
\item<2-> optimize implementation detail:
\begin{itemize}
\item remove indirection
\item bottleneck? memory!\\
(plenty of Main-memory, but FAST memory is scarce\\
\(\rightarrow\) improve cache \& bus efficiency with compact representations)
\begin{itemize}
\item<3-> Balance De-/Encode Overhead
vs. Fetch-Overhead
\item<4-> Synchronize locality in access order and memory layout.
-> elements accessed in succession shall be close in memory.
(e.g. AoS vs SoA)
\item<5-> accounting for machine specific cache-sizes
\item<6-> accounting for SIMD instructions
\item<7-> interfacing with kernels running on accelerator devices
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Abstract Concept - Multiple Representations}
\framesubtitle{Requirements for a type system}
\begin{itemize}
\item
\end{itemize}
\end{frame}
\begin{frame}{Coercions: (In-)Coherence with Transitivity}
\begin{itemize}
\item<1-> Common example: coerce \texttt{Int -> Real}
(subsumption \(\mathbb{N} \subset \mathbb{R}\))
\begin{itemize}
\item \texttt{Int -> Real}
\item \texttt{Int -> String}
\item \texttt{Real -> String}
\end{itemize}
\item<2-> transitivity creates two extensionally \emph{different} coercion paths:
\begin{itemize}
\item \texttt{Int -> String} (3 -> "3")
\item \texttt{Int -> Real -> String} (3 -> "3.0")
\end{itemize}
\item<3-> Subsumptive interpretation is misleading!
\item<3-> \texttt{Int -> Real} is not as unambiguous as it might seem.
\begin{itemize}
\item value ranges (e.g. map int to unit interval [0,1])
\item multiple quantization functions (linear, exponential, \dots)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Sea of Types}
\includegraphics[width=\textwidth]{sot-int.png}
\end{frame}
\begin{frame}{Sea of Types}
\includegraphics[width=\textwidth]{sot-json.png}
\end{frame}
\begin{frame}{Ladder Types}
\begin{block}{Intuition}
Encode "represented-as" relation into type terms
\end{block}
\begin{block}{}
\( \tau_1 \sim \tau_2 \) reads "\(\tau_1\) represented as \(\tau_2\)"
\end{block}
\begin{example}\(
Color \sim sRGB
\sim HSV \sim \langle \text{Vec3} \quad \mathbb{R}_{[0,1]}
\sim \langle \text{QuantizeLinear} \quad 256 \rangle
\sim \mathbb{Z}_{256} \sim \text{machine.UInt8} \sim \text{Byte}
\rangle
\sim \text{[Byte; 3]}
\)\end{example}
\end{frame}
\begin{frame}{Extending System F}
\small
\begin{grammar}
\firstcase{ T }{
\metavariable{\sigma}
}{Base Type}
\otherform{
\metavariable{\alpha}
}{Type Variable}
\otherform{
\typeterminal{\forall} \metavariable{\alpha} \typeterminal{.} \nonterm{T}
}{Universal Type}
\otherform{
\typeterminal{<} \nonterm{T} \quad \nonterm{T} \typeterminal{>}
}{Specialized Type}
\otherform{
\nonterm{T} \quad \typeterminal{\rightarrow} \quad \nonterm{T}
}{Function Type}
\otherform{
\nonterm{T} \quad \typeterminal{\rightarrow_\text{morph}} \quad \nonterm{T}
}{Morphism Type}
\otherform{
\nonterm{T} \quad \typeterminal{\sim} \quad \nonterm{T}
}{Ladder Type}
$$\\$$
\firstcase{ E
% T_\selexpr
}
{ \metavariable{x}
} {Variable}
\otherform{
\exprterminal{let} \quad \metavariable{x} \quad \exprterminal{=} \quad
\nonterm{ E }
\quad \exprterminal{in} \quad
\nonterm{ E }
}{Variable Binding}
\otherform{
$$ \exprterminal{\Lambda} \metavariable{\alpha}
\quad \exprterminal{\mapsto} \quad $$
\nonterm{ E }
}{Type Abstraction}
\otherform{
$$ \exprterminal{\lambda} \metavariable{x} $$
\exprterminal{:} \nonterm{ T }
\quad $$\exprterminal{\mapsto}$$ \quad
\nonterm{ E }
}{Value Abstraction}
\otherform{
$$ \exprterminal{\lambda} \metavariable{x} $$
\exprterminal{:} \nonterm{ T }
\quad $$\exprterminal{\mapsto_\text{morph}}$$ \quad
\nonterm{ E }
}{Value Morphism}
\otherform{
\nonterm{ E }
\quad
\nonterm{ T }
}{Type Application}
\otherform{
\nonterm{ E }
\quad
\nonterm{ E }
}{Value Application}
\otherform{
\nonterm{ E }
\quad
\exprterminal{as}
\quad
\nonterm{ T }
}{Ascension}
\otherform{
\nonterm{ E }
\quad
\exprterminal{des}
\quad
\nonterm{ T }
}{Descension}
\end{grammar}
\end{frame}
\begin{frame}{Morphism Graph}
\begin{definition}[Morphism Paths]
\label{def:pathrules}
\begin{mathpar}
\inferrule[M-Sub]{
\metavariable{\tau} \leq \metavariable{\tau'}
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}
\inferrule[M-Single]{
(\metavariable{h} : \metavariable{\tau} \typeterminal{\rightarrow_\text{morph}} \metavariable{\tau'}) \in \Gamma
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}
\inferrule[M-Chain]{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}\\
\Gamma \vdash \metavariable{\tau'} \leadsto \metavariable{\tau''}
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau''}
}
\inferrule[M-MapSeq]{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}{
\Gamma \vdash
\typeterminal{\langle\text{Seq } \metavariable{\tau}\rangle} \leadsto
\typeterminal{\langle\text{Seq } \metavariable{\tau'}\rangle}
}
\end{mathpar}
\end{definition}
\end{frame}
\begin{frame}{Morphism Graph}
\begin{example}[Morphism Graph]
\begin{mathpar}
\small
\text{Assume }
\Gamma := \{\\
\exprterminal{\text{degrees-to-turns}} : \typeterminal{\text{Angle}\sim\text{Degrees}\sim\mathbb{R} \quad \rightarrow_\text{morph} \quad \text{Angle}\sim\text{Turns}\sim\mathbb{R}},\\
\exprterminal{\text{turns-to-radians}} : \typeterminal{\text{Angle}\sim\text{Turns}\sim\mathbb{R} \quad \rightarrow_\text{morph} \quad \text{Angle}\sim\text{Radians}\sim\mathbb{R}},\\
\}.
\end{mathpar}
\end{example}
\end{frame}
\begin{frame}{Morphism Graph}
\begin{example}[Morphism Graph]
Then ..
\small
\begin{itemize}
\item \(\Gamma \vdash \typeterminal{\text{Angle}\sim\text{Degrees}\sim\mathbb{R}} \leadsto \typeterminal{\mathbb{R}}\) (by \textsc{M-Sub})
\item \(\Gamma \vdash \typeterminal{\text{Angle}\sim\text{Degrees}\sim\mathbb{R}} \leadsto \typeterminal{\text{Angle}\sim\text{Radians}\sim\mathbb{R}}\) (by \textsc{M-Chain})
\item \(\Gamma \vdash \typeterminal{\langle\text{Seq }\text{Angle}\sim\text{Degrees}\sim\mathbb{R}\rangle} \leadsto \typeterminal{\langle\text{Seq }\text{Angle}\sim\text{Radians}\sim\mathbb{R}\rangle}\) (by \textsc{M-MapSeq})
\end{itemize}
\end{example}
\end{frame}
\begin{frame}{Typing}
\begin{definition}[Typing Relation]
\begin{mathpar}
\inferrule[T-App]{
\Gamma \vdash \metavariable{f} : \metavariable{\sigma} \typeterminal{\rightarrow} \metavariable{\tau}\\
\Gamma \vdash \metavariable{a} : \metavariable{\sigma'}\\
\Gamma \vdash \metavariable{\sigma'} \leadsto \metavariable{\sigma}
}{
\Gamma \vdash (\metavariable{f} \quad \metavariable{a}) : \metavariable{\tau}
}
\end{mathpar}
\end{definition}
\end{frame}
\begin{frame}{Translation}
\begin{definition}[Morphism Translation]
\begin{mathpar}
\small
\Big{\llbracket}
\inferrule[M-Sub]{
\metavariable{\tau} \leq \metavariable{\tau'}
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}
\Big{\rrbracket} = \exprterminal{\lambda x:\metavariable{\tau} \mapsto x}
\and
\Big{\llbracket}
\inferrule[M-Single]{
(\metavariable{h} : \metavariable{\tau} \typeterminal{\rightarrow_\text{morph}} \metavariable{\tau'}) \in \Gamma
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}
\Big{\rrbracket} = \metavariable{h}
\and
\end{mathpar}
\end{definition}
\end{frame}
\begin{frame}{Translation}
\begin{definition}[Morphism Translation (2)]
\begin{mathpar}
\small
\Big{\llbracket}
\inferrule[M-Chain]{
C_1 :: \Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}\\
C_2 :: \Gamma \vdash \metavariable{\tau'} \leadsto \metavariable{\tau''}
}{
\Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau''}
}
\Big{\rrbracket} = \exprterminal{\lambda \text{x}:\metavariable{\tau} \mapsto}
\Big{\llbracket} C_2 \Big{\rrbracket}
\exprterminal{(}\Big{\llbracket} C_1 \Big{\rrbracket} \exprterminal{\text{x})}
\and
\Big{\llbracket}
\inferrule[M-MapSeq]{
C_1 :: \Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}
}{
\Gamma \vdash
\typeterminal{\langle\text{Seq } \metavariable{\tau}\rangle} \leadsto
\typeterminal{\langle\text{Seq } \metavariable{\tau'}\rangle}
}
\Big{\rrbracket} = \exprterminal{\lambda \text{xs}:\typeterminal{\langle\text{Seq }\metavariable{\tau}\rangle} \mapsto}
\exprterminal{( \text{map}} \Big{\llbracket} C_1 \Big{\rrbracket} \exprterminal{\text{xs})}
\end{mathpar}
\end{definition}
\end{frame}
\begin{frame}{Translation}
\begin{definition}[Expression Translation]
Translates a type-derivation tree into a fully expanded expression
\begin{mathpar}
\Big{\llbracket}
\inferrule[T-App]{
D_1 :: \Gamma \vdash \metavariable{f} : \metavariable{\sigma} \typeterminal{\rightarrow} \metavariable{\tau}\\
D_2 :: \Gamma \vdash \metavariable{a} : \metavariable{\sigma'}\\\\
C :: \Gamma \vdash \metavariable{\sigma'} \leadsto \metavariable{\sigma}
}{
\Gamma \vdash (\metavariable{f} \quad \metavariable{a}) : \metavariable{\tau}
}
\Big{\rrbracket} =
\Big{\llbracket}D_1\Big{\rrbracket}
\exprterminal{(}
\Big{\llbracket}C\Big{\rrbracket}
\Big{\llbracket}D_2\Big{\rrbracket}
\exprterminal{)}
\end{mathpar}
\end{definition}
\end{frame}
\begin{frame}{Soundness}
\begin{lemma}[Morphism generation has correct type]
\begin{mathpar}
C :: \Gamma \vdash \metavariable{\tau} \leadsto \metavariable{\tau'}\\
\Rightarrow \Gamma \vdash \llbracket C \rrbracket : \metavariable{\tau} \typeterminal{\rightarrow_\text{morph}} \metavariable{\tau'}
\end{mathpar}
\end{lemma}
\begin{lemma}[Expression Translation preserves typing]
\begin{mathpar}
D :: \Gamma \vdash \metavariable{e} : \metavariable{\tau}\\
\Rightarrow \Gamma \vdash \llbracket D \rrbracket : \metavariable{\tau}
\end{mathpar}
\end{lemma}
\end{frame}
\begin{frame}{Soundness}
\begin{theorem}[Preservation]
\begin{mathpar} \forall \Gamma, \metavariable{e}, \metavariable{\tau},\\
D :: \Gamma \vdash \metavariable{e} : \metavariable{\tau}\\
\Rightarrow \llbracket D \rrbracket \rightarrow_{eval} \metavariable{e'} \\
\Rightarrow \Gamma \vdash \metavariable{e'} : \metavariable{\tau}
\end{mathpar}
\end{theorem}
\end{frame}
\begin{frame}{Soundness}
\begin{theorem}[Progress]
\begin{mathpar} \forall \Gamma, \metavariable{e}, \metavariable{\tau},\\
D :: \Gamma \vdash \metavariable{e} : \metavariable{\tau}\\
\Rightarrow \llbracket D \rrbracket \text{ is a value} \\ \vee \\
\exists \metavariable{e'} . \llbracket D \rrbracket \rightarrow_{eval} \metavariable{e'} \\
\end{mathpar}
\end{theorem}
\end{frame}
\begin{frame}{Summary}
todo
\end{frame}
\end{document}