666 lines
21 KiB
Coq
666 lines
21 KiB
Coq
|
(** Infrastructure lemmas and tactic definitions for Fsub.
|
||
|
|
||
|
Authors: Brian Aydemir and Arthur Charguéraud, with help from
|
||
|
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
|
||
|
|
||
|
This file contains a number of definitions, tactics, and lemmas
|
||
|
that are based only on the syntax of the language at hand. While
|
||
|
the exact statements of everything here would change for a
|
||
|
different language, the general structure of this file (i.e., the
|
||
|
sequence of definitions, tactics, and lemmas) would remain the
|
||
|
same.
|
||
|
|
||
|
Table of contents:
|
||
|
- #<a href="##fv">Free variables</a>#
|
||
|
- #<a href="##subst">Substitution</a>#
|
||
|
- #<a href="##pick_fresh">The "pick fresh" tactic</a>#
|
||
|
- #<a href="##apply_fresh">The "pick fresh and apply" tactic</a>#
|
||
|
- #<a href="##properties">Properties of opening and substitution</a>#
|
||
|
- #<a href="##lc">Local closure is preserved under substitution</a>#
|
||
|
- #<a href="##auto">Automation</a># *)
|
||
|
|
||
|
|
||
|
Require Export Fsub_Definitions.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** * #<a name="fv"></a># Free variables *)
|
||
|
|
||
|
(** In this section, we define free variable functions. The functions
|
||
|
[fv_tt] and [fv_te] calculate the set of atoms used as free type
|
||
|
variables in a type or expression, respectively. The function
|
||
|
[fv_ee] calculates the set of atoms used as free expression
|
||
|
variables in an expression. Cases involving binders are
|
||
|
straightforward since bound variables are indices, not names, in
|
||
|
locally nameless representation. *)
|
||
|
|
||
|
Fixpoint fv_tt (T : typ) {struct T} : atoms :=
|
||
|
match T with
|
||
|
| typ_top => {}
|
||
|
| typ_bvar J => {}
|
||
|
| typ_fvar X => singleton X
|
||
|
| typ_arrow T1 T2 => (fv_tt T1) `union` (fv_tt T2)
|
||
|
| typ_all T1 T2 => (fv_tt T1) `union` (fv_tt T2)
|
||
|
end.
|
||
|
|
||
|
Fixpoint fv_te (e : exp) {struct e} : atoms :=
|
||
|
match e with
|
||
|
| exp_bvar i => {}
|
||
|
| exp_fvar x => {}
|
||
|
| exp_abs V e1 => (fv_tt V) `union` (fv_te e1)
|
||
|
| exp_app e1 e2 => (fv_te e1) `union` (fv_te e2)
|
||
|
| exp_tabs V e1 => (fv_tt V) `union` (fv_te e1)
|
||
|
| exp_tapp e1 V => (fv_tt V) `union` (fv_te e1)
|
||
|
end.
|
||
|
|
||
|
Fixpoint fv_ee (e : exp) {struct e} : atoms :=
|
||
|
match e with
|
||
|
| exp_bvar i => {}
|
||
|
| exp_fvar x => singleton x
|
||
|
| exp_abs V e1 => (fv_ee e1)
|
||
|
| exp_app e1 e2 => (fv_ee e1) `union` (fv_ee e2)
|
||
|
| exp_tabs V e1 => (fv_ee e1)
|
||
|
| exp_tapp e1 V => (fv_ee e1)
|
||
|
end.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** * #<a name="subst"></a># Substitution *)
|
||
|
|
||
|
(** In this section, we define substitution for expression and type
|
||
|
variables appearing in types, expressions, and environments.
|
||
|
Substitution differs from opening because opening replaces indices
|
||
|
whereas substitution replaces free variables. The definitions
|
||
|
below are relatively simple for two reasons.
|
||
|
- We are using locally nameless representation, where bound
|
||
|
variables are represented using indices. Thus, there is no
|
||
|
need to rename variables to avoid capture.
|
||
|
- The definitions below assume that the term being substituted
|
||
|
in, i.e., the second argument to each function, is locally
|
||
|
closed. Thus, there is no need to shift indices when passing
|
||
|
under a binder. *)
|
||
|
|
||
|
Fixpoint subst_tt (Z : atom) (U : typ) (T : typ) {struct T} : typ :=
|
||
|
match T with
|
||
|
| typ_top => typ_top
|
||
|
| typ_bvar J => typ_bvar J
|
||
|
| typ_fvar X => if X == Z then U else T
|
||
|
| typ_arrow T1 T2 => typ_arrow (subst_tt Z U T1) (subst_tt Z U T2)
|
||
|
| typ_all T1 T2 => typ_all (subst_tt Z U T1) (subst_tt Z U T2)
|
||
|
end.
|
||
|
|
||
|
Fixpoint subst_te (Z : atom) (U : typ) (e : exp) {struct e} : exp :=
|
||
|
match e with
|
||
|
| exp_bvar i => exp_bvar i
|
||
|
| exp_fvar x => exp_fvar x
|
||
|
| exp_abs V e1 => exp_abs (subst_tt Z U V) (subst_te Z U e1)
|
||
|
| exp_app e1 e2 => exp_app (subst_te Z U e1) (subst_te Z U e2)
|
||
|
| exp_tabs V e1 => exp_tabs (subst_tt Z U V) (subst_te Z U e1)
|
||
|
| exp_tapp e1 V => exp_tapp (subst_te Z U e1) (subst_tt Z U V)
|
||
|
end.
|
||
|
|
||
|
Fixpoint subst_ee (z : atom) (u : exp) (e : exp) {struct e} : exp :=
|
||
|
match e with
|
||
|
| exp_bvar i => exp_bvar i
|
||
|
| exp_fvar x => if x == z then u else e
|
||
|
| exp_abs V e1 => exp_abs V (subst_ee z u e1)
|
||
|
| exp_app e1 e2 => exp_app (subst_ee z u e1) (subst_ee z u e2)
|
||
|
| exp_tabs V e1 => exp_tabs V (subst_ee z u e1)
|
||
|
| exp_tapp e1 V => exp_tapp (subst_ee z u e1) V
|
||
|
end.
|
||
|
|
||
|
Definition subst_tb (Z : atom) (P : typ) (b : binding) : binding :=
|
||
|
match b with
|
||
|
| bind_sub T => bind_sub (subst_tt Z P T)
|
||
|
| bind_typ T => bind_typ (subst_tt Z P T)
|
||
|
end.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** * #<a name="pick_fresh"></a># The "[pick fresh]" tactic *)
|
||
|
|
||
|
(** The "[pick fresh]" tactic introduces a fresh atom into the context.
|
||
|
We define it in two steps.
|
||
|
|
||
|
The first step is to define an auxiliary tactic [gather_atoms],
|
||
|
meant to be used in the definition of other tactics, which returns
|
||
|
a set of atoms in the current context. The definition of
|
||
|
[gather_atoms] follows a pattern based on repeated calls to
|
||
|
[gather_atoms_with]. The one argument to this tactic is a
|
||
|
function that takes an object of some particular type and returns
|
||
|
a set of atoms that appear in that argument. It is not necessary
|
||
|
to understand exactly how [gather_atoms_with] works. If we add a
|
||
|
new inductive datatype, say for kinds, to our language, then we
|
||
|
would need to modify [gather_atoms]. On the other hand, if we
|
||
|
merely add a new type, say products, then there is no need to
|
||
|
modify [gather_atoms]; the required changes would be made in
|
||
|
[fv_tt]. *)
|
||
|
|
||
|
Ltac gather_atoms :=
|
||
|
let A := gather_atoms_with (fun x : atoms => x) in
|
||
|
let B := gather_atoms_with (fun x : atom => singleton x) in
|
||
|
let C := gather_atoms_with (fun x : exp => fv_te x) in
|
||
|
let D := gather_atoms_with (fun x : exp => fv_ee x) in
|
||
|
let E := gather_atoms_with (fun x : typ => fv_tt x) in
|
||
|
let F := gather_atoms_with (fun x : env => dom x) in
|
||
|
constr:(A `union` B `union` C `union` D `union` E `union` F).
|
||
|
|
||
|
(** The second step in defining "[pick fresh]" is to define the tactic
|
||
|
itself. It is based on the [(pick fresh ... for ...)] tactic
|
||
|
defined in the [Atom] library. Here, we use [gather_atoms] to
|
||
|
construct the set [L] rather than leaving it to the user to
|
||
|
provide. Thus, invoking [(pick fresh x)] introduces a new atom
|
||
|
[x] into the current context that is fresh for "everything" in the
|
||
|
context. *)
|
||
|
|
||
|
Tactic Notation "pick" "fresh" ident(x) :=
|
||
|
let L := gather_atoms in (pick fresh x for L).
|
||
|
|
||
|
|
||
|
(* *********************************************************************** *)
|
||
|
(** * #<a name="apply_fresh"></a># The "[pick fresh and apply]" tactic *)
|
||
|
|
||
|
(** This tactic is implementation specific only because of its
|
||
|
reliance on [gather_atoms], which is itself implementation
|
||
|
specific. The definition below may be copied between developments
|
||
|
without any changes, assuming that the other other developments
|
||
|
define an appropriate [gather_atoms] tactic. For documentation on
|
||
|
the tactic on which the one below is based, see the
|
||
|
[Metatheory] library. *)
|
||
|
|
||
|
Tactic Notation
|
||
|
"pick" "fresh" ident(atom_name) "and" "apply" constr(lemma) :=
|
||
|
let L := gather_atoms in
|
||
|
pick fresh atom_name excluding L and apply lemma.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** * #<a name="properties"></a># Properties of opening and substitution *)
|
||
|
|
||
|
(** The following lemmas provide useful structural properties of
|
||
|
substitution and opening. While the exact statements are language
|
||
|
specific, we have found that similar properties are needed in a
|
||
|
wide range of languages.
|
||
|
|
||
|
Below, we indicate which lemmas depend on which other lemmas.
|
||
|
Since [te] functions depend on their [tt] counterparts, a similar
|
||
|
dependency can be found in the lemmas.
|
||
|
|
||
|
The lemmas are split into three sections, one each for the [tt],
|
||
|
[te], and [ee] functions. The most important lemmas are the
|
||
|
following:
|
||
|
- Substitution and opening commute with each other, e.g.,
|
||
|
[subst_tt_open_tt_var].
|
||
|
- Opening a term is equivalent to opening the term with a fresh
|
||
|
name and then substituting for that name, e.g.,
|
||
|
[subst_tt_intro].
|
||
|
|
||
|
We keep the sections as uniform in structure as possible. In
|
||
|
particular, we state explicitly strengthened induction hypotheses
|
||
|
even when there are more concise ways of proving the lemmas of
|
||
|
interest. *)
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** ** Properties of type substitution in types *)
|
||
|
|
||
|
(** The next lemma is the strengthened induction hypothesis for the
|
||
|
lemma that follows, which states that opening a locally closed
|
||
|
term is the identity. This lemma is not otherwise independently
|
||
|
useful. *)
|
||
|
|
||
|
Lemma open_tt_rec_type_aux : forall T j V i U,
|
||
|
i <> j ->
|
||
|
open_tt_rec j V T = open_tt_rec i U (open_tt_rec j V T) ->
|
||
|
T = open_tt_rec i U T.
|
||
|
Proof with eauto*.
|
||
|
induction T; intros j V i U Neq H; simpl in *; inversion H; f_equal...
|
||
|
Case "typ_bvar".
|
||
|
destruct (j === n)... destruct (i === n)...
|
||
|
Qed.
|
||
|
|
||
|
(** Opening a locally closed term is the identity. This lemma depends
|
||
|
on the immediately preceding lemma. *)
|
||
|
|
||
|
Lemma open_tt_rec_type : forall T U k,
|
||
|
type T ->
|
||
|
T = open_tt_rec k U T.
|
||
|
Proof with auto*.
|
||
|
intros T U k Htyp. revert k.
|
||
|
induction Htyp; intros k; simpl; f_equal...
|
||
|
Case "typ_all".
|
||
|
unfold open_tt in *.
|
||
|
pick fresh X.
|
||
|
apply (open_tt_rec_type_aux T2 0 (typ_fvar X))...
|
||
|
Qed.
|
||
|
|
||
|
(** If a name is fresh for a term, then substituting for it is the
|
||
|
identity. *)
|
||
|
|
||
|
Lemma subst_tt_fresh : forall Z U T,
|
||
|
Z `notin` fv_tt T ->
|
||
|
T = subst_tt Z U T.
|
||
|
Proof with auto*.
|
||
|
induction T; simpl; intro H; f_equal...
|
||
|
Case "typ_fvar".
|
||
|
destruct (a == Z)...
|
||
|
absurd_hyp H; fsetdec.
|
||
|
Qed.
|
||
|
|
||
|
(** Substitution commutes with opening under certain conditions. This
|
||
|
lemma depends on the fact that opening a locally closed term is
|
||
|
the identity. *)
|
||
|
|
||
|
Lemma subst_tt_open_tt_rec : forall T1 T2 X P k,
|
||
|
type P ->
|
||
|
subst_tt X P (open_tt_rec k T2 T1) =
|
||
|
open_tt_rec k (subst_tt X P T2) (subst_tt X P T1).
|
||
|
Proof with auto*.
|
||
|
intros T1 T2 X P k WP. revert k.
|
||
|
induction T1; intros k; simpl; f_equal...
|
||
|
Case "typ_bvar".
|
||
|
destruct (k === n); subst...
|
||
|
Case "typ_fvar".
|
||
|
destruct (a == X); subst... apply open_tt_rec_type...
|
||
|
Qed.
|
||
|
|
||
|
(** The next lemma is a direct corollary of the immediately preceding
|
||
|
lemma---the index is specialized to zero. *)
|
||
|
|
||
|
Lemma subst_tt_open_tt : forall T1 T2 (X:atom) P,
|
||
|
type P ->
|
||
|
subst_tt X P (open_tt T1 T2) = open_tt (subst_tt X P T1) (subst_tt X P T2).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_tt.
|
||
|
apply subst_tt_open_tt_rec...
|
||
|
Qed.
|
||
|
|
||
|
(** The next lemma is a direct corollary of the immediately preceding
|
||
|
lemma---here, we're opening the term with a variable. In
|
||
|
practice, this lemma seems to be needed as a left-to-right rewrite
|
||
|
rule, when stated in its current form. *)
|
||
|
|
||
|
Lemma subst_tt_open_tt_var : forall (X Y:atom) P T,
|
||
|
Y <> X ->
|
||
|
type P ->
|
||
|
open_tt (subst_tt X P T) Y = subst_tt X P (open_tt T Y).
|
||
|
Proof with auto*.
|
||
|
intros X Y P T Neq Wu.
|
||
|
unfold open_tt.
|
||
|
rewrite subst_tt_open_tt_rec...
|
||
|
simpl.
|
||
|
destruct (Y == X)...
|
||
|
Qed.
|
||
|
|
||
|
(** The next lemma states that opening a term is equivalent to first
|
||
|
opening the term with a fresh name and then substituting for the
|
||
|
name. This is actually the strengthened induction hypothesis for
|
||
|
the version we use in practice. *)
|
||
|
|
||
|
Lemma subst_tt_intro_rec : forall X T2 U k,
|
||
|
X `notin` fv_tt T2 ->
|
||
|
open_tt_rec k U T2 = subst_tt X U (open_tt_rec k (typ_fvar X) T2).
|
||
|
Proof with auto*.
|
||
|
induction T2; intros U k Fr; simpl in *; f_equal...
|
||
|
Case "typ_bvar".
|
||
|
destruct (k === n)... simpl. destruct (X == X)...
|
||
|
Case "typ_fvar".
|
||
|
destruct (a == X)... absurd_hyp Fr; fsetdec.
|
||
|
Qed.
|
||
|
|
||
|
(** The next lemma is a direct corollary of the immediately preceding
|
||
|
lemma---the index is specialized to zero. *)
|
||
|
|
||
|
Lemma subst_tt_intro : forall X T2 U,
|
||
|
X `notin` fv_tt T2 ->
|
||
|
open_tt T2 U = subst_tt X U (open_tt T2 X).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_tt.
|
||
|
apply subst_tt_intro_rec...
|
||
|
Qed.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** ** Properties of type substitution in expressions *)
|
||
|
|
||
|
(** This section follows the structure of the previous section. The
|
||
|
one notable difference is that we require two auxiliary lemmas to
|
||
|
show that substituting a type in a locally-closed expression is
|
||
|
the identity. *)
|
||
|
|
||
|
Lemma open_te_rec_expr_aux : forall e j u i P ,
|
||
|
open_ee_rec j u e = open_te_rec i P (open_ee_rec j u e) ->
|
||
|
e = open_te_rec i P e.
|
||
|
Proof with eauto*.
|
||
|
induction e; intros j u i P H; simpl in *; inversion H; f_equal...
|
||
|
Qed.
|
||
|
|
||
|
Lemma open_te_rec_type_aux : forall e j Q i P,
|
||
|
i <> j ->
|
||
|
open_te_rec j Q e = open_te_rec i P (open_te_rec j Q e) ->
|
||
|
e = open_te_rec i P e.
|
||
|
Proof.
|
||
|
induction e; intros j Q i P Neq Heq; simpl in *; inversion Heq;
|
||
|
f_equal; eauto using open_tt_rec_type_aux.
|
||
|
Qed.
|
||
|
|
||
|
Lemma open_te_rec_expr : forall e U k,
|
||
|
expr e ->
|
||
|
e = open_te_rec k U e.
|
||
|
Proof with auto*.
|
||
|
intros e U k WF. revert k.
|
||
|
induction WF; intros k; simpl; f_equal; auto using open_tt_rec_type;
|
||
|
try solve [
|
||
|
unfold open_ee in *;
|
||
|
pick fresh x;
|
||
|
eapply open_te_rec_expr_aux with (j := 0) (u := exp_fvar x);
|
||
|
auto*
|
||
|
| unfold open_te in *;
|
||
|
pick fresh X;
|
||
|
eapply open_te_rec_type_aux with (j := 0) (Q := typ_fvar X);
|
||
|
auto*
|
||
|
].
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_fresh : forall X U e,
|
||
|
X `notin` fv_te e ->
|
||
|
e = subst_te X U e.
|
||
|
Proof.
|
||
|
induction e; simpl; intros; f_equal; auto using subst_tt_fresh.
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_te_rec : forall e T X U k,
|
||
|
type U ->
|
||
|
subst_te X U (open_te_rec k T e) =
|
||
|
open_te_rec k (subst_tt X U T) (subst_te X U e).
|
||
|
Proof.
|
||
|
intros e T X U k WU. revert k.
|
||
|
induction e; intros k; simpl; f_equal; auto using subst_tt_open_tt_rec.
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_te : forall e T X U,
|
||
|
type U ->
|
||
|
subst_te X U (open_te e T) = open_te (subst_te X U e) (subst_tt X U T).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_te.
|
||
|
apply subst_te_open_te_rec...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_te_var : forall (X Y:atom) U e,
|
||
|
Y <> X ->
|
||
|
type U ->
|
||
|
open_te (subst_te X U e) Y = subst_te X U (open_te e Y).
|
||
|
Proof with auto*.
|
||
|
intros X Y U e Neq WU.
|
||
|
unfold open_te.
|
||
|
rewrite subst_te_open_te_rec...
|
||
|
simpl.
|
||
|
destruct (Y == X)...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_intro_rec : forall X e U k,
|
||
|
X `notin` fv_te e ->
|
||
|
open_te_rec k U e = subst_te X U (open_te_rec k (typ_fvar X) e).
|
||
|
Proof.
|
||
|
induction e; intros U k Fr; simpl in *; f_equal;
|
||
|
auto using subst_tt_intro_rec.
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_intro : forall X e U,
|
||
|
X `notin` fv_te e ->
|
||
|
open_te e U = subst_te X U (open_te e X).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_te.
|
||
|
apply subst_te_intro_rec...
|
||
|
Qed.
|
||
|
|
||
|
|
||
|
(* ********************************************************************** *)
|
||
|
(** ** Properties of expression substitution in expressions *)
|
||
|
|
||
|
(** This section follows the structure of the previous two sections. *)
|
||
|
|
||
|
Lemma open_ee_rec_expr_aux : forall e j v u i,
|
||
|
i <> j ->
|
||
|
open_ee_rec j v e = open_ee_rec i u (open_ee_rec j v e) ->
|
||
|
e = open_ee_rec i u e.
|
||
|
Proof with eauto*.
|
||
|
induction e; intros j v u i Neq H; simpl in *; inversion H; f_equal...
|
||
|
Case "exp_bvar".
|
||
|
destruct (j===n)... destruct (i===n)...
|
||
|
Qed.
|
||
|
|
||
|
Lemma open_ee_rec_type_aux : forall e j V u i,
|
||
|
open_te_rec j V e = open_ee_rec i u (open_te_rec j V e) ->
|
||
|
e = open_ee_rec i u e.
|
||
|
Proof.
|
||
|
induction e; intros j V u i H; simpl; inversion H; f_equal; eauto.
|
||
|
Qed.
|
||
|
|
||
|
Lemma open_ee_rec_expr : forall u e k,
|
||
|
expr e ->
|
||
|
e = open_ee_rec k u e.
|
||
|
Proof with auto*.
|
||
|
intros u e k Hexpr. revert k.
|
||
|
induction Hexpr; intro k; simpl; f_equal; auto*;
|
||
|
try solve [
|
||
|
unfold open_ee in *;
|
||
|
pick fresh x;
|
||
|
eapply open_ee_rec_expr_aux with (j := 0) (v := exp_fvar x);
|
||
|
auto*
|
||
|
| unfold open_te in *;
|
||
|
pick fresh X;
|
||
|
eapply open_ee_rec_type_aux with (j := 0) (V := typ_fvar X);
|
||
|
auto*
|
||
|
].
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_fresh : forall (x: atom) u e,
|
||
|
x `notin` fv_ee e ->
|
||
|
e = subst_ee x u e.
|
||
|
Proof with auto*.
|
||
|
intros x u e; induction e; simpl; intro H; f_equal...
|
||
|
Case "exp_fvar".
|
||
|
destruct (a==x)...
|
||
|
absurd_hyp H; fsetdec.
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_ee_rec : forall e1 e2 x u k,
|
||
|
expr u ->
|
||
|
subst_ee x u (open_ee_rec k e2 e1) =
|
||
|
open_ee_rec k (subst_ee x u e2) (subst_ee x u e1).
|
||
|
Proof with auto*.
|
||
|
intros e1 e2 x u k WP. revert k.
|
||
|
induction e1; intros k; simpl; f_equal...
|
||
|
Case "exp_bvar".
|
||
|
destruct (k === n); subst...
|
||
|
Case "exp_fvar".
|
||
|
destruct (a == x); subst... apply open_ee_rec_expr...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_ee : forall e1 e2 x u,
|
||
|
expr u ->
|
||
|
subst_ee x u (open_ee e1 e2) =
|
||
|
open_ee (subst_ee x u e1) (subst_ee x u e2).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_ee.
|
||
|
apply subst_ee_open_ee_rec...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_ee_var : forall (x y:atom) u e,
|
||
|
y <> x ->
|
||
|
expr u ->
|
||
|
open_ee (subst_ee x u e) y = subst_ee x u (open_ee e y).
|
||
|
Proof with auto*.
|
||
|
intros x y u e Neq Wu.
|
||
|
unfold open_ee.
|
||
|
rewrite subst_ee_open_ee_rec...
|
||
|
simpl.
|
||
|
destruct (y == x)...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_ee_rec : forall e1 e2 Z P k,
|
||
|
subst_te Z P (open_ee_rec k e2 e1) =
|
||
|
open_ee_rec k (subst_te Z P e2) (subst_te Z P e1).
|
||
|
Proof with auto*.
|
||
|
induction e1; intros e2 Z P k; simpl; f_equal...
|
||
|
Case "exp_bvar".
|
||
|
destruct (k === n)...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_ee : forall e1 e2 Z P,
|
||
|
subst_te Z P (open_ee e1 e2) = open_ee (subst_te Z P e1) (subst_te Z P e2).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_ee.
|
||
|
apply subst_te_open_ee_rec...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_te_open_ee_var : forall Z (x:atom) P e,
|
||
|
open_ee (subst_te Z P e) x = subst_te Z P (open_ee e x).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
rewrite subst_te_open_ee...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_te_rec : forall e P z u k,
|
||
|
expr u ->
|
||
|
subst_ee z u (open_te_rec k P e) = open_te_rec k P (subst_ee z u e).
|
||
|
Proof with auto*.
|
||
|
induction e; intros P z u k H; simpl; f_equal...
|
||
|
Case "exp_fvar".
|
||
|
destruct (a == z)... apply open_te_rec_expr...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_te : forall e P z u,
|
||
|
expr u ->
|
||
|
subst_ee z u (open_te e P) = open_te (subst_ee z u e) P.
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_te.
|
||
|
apply subst_ee_open_te_rec...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_open_te_var : forall z (X:atom) u e,
|
||
|
expr u ->
|
||
|
open_te (subst_ee z u e) X = subst_ee z u (open_te e X).
|
||
|
Proof with auto*.
|
||
|
intros z X u e H.
|
||
|
rewrite subst_ee_open_te...
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_intro_rec : forall x e u k,
|
||
|
x `notin` fv_ee e ->
|
||
|
open_ee_rec k u e = subst_ee x u (open_ee_rec k (exp_fvar x) e).
|
||
|
Proof with auto*.
|
||
|
induction e; intros u k Fr; simpl in *; f_equal...
|
||
|
Case "exp_bvar".
|
||
|
destruct (k === n)... simpl. destruct (x == x)...
|
||
|
Case "exp_fvar".
|
||
|
destruct (a == x)... absurd_hyp Fr; fsetdec.
|
||
|
Qed.
|
||
|
|
||
|
Lemma subst_ee_intro : forall x e u,
|
||
|
x `notin` fv_ee e ->
|
||
|
open_ee e u = subst_ee x u (open_ee e x).
|
||
|
Proof with auto*.
|
||
|
intros.
|
||
|
unfold open_ee.
|
||
|
apply subst_ee_intro_rec...
|
||
|
Qed.
|
||
|
|
||
|
|
||
|
(* *********************************************************************** *)
|
||
|
(** * #<a name="lc"></a># Local closure is preserved under substitution *)
|
||
|
|
||
|
(** While these lemmas may be considered properties of substitution, we
|
||
|
separate them out due to the lemmas that they depend on. *)
|
||
|
|
||
|
(** The following lemma depends on [subst_tt_open_tt_var]. *)
|
||
|
|
||
|
Lemma subst_tt_type : forall Z P T,
|
||
|
type T ->
|
||
|
type P ->
|
||
|
type (subst_tt Z P T).
|
||
|
Proof with auto.
|
||
|
intros Z P T HT HP.
|
||
|
induction HT; simpl...
|
||
|
Case "type_fvar".
|
||
|
destruct (X == Z)...
|
||
|
Case "type_all".
|
||
|
pick fresh Y and apply type_all...
|
||
|
rewrite subst_tt_open_tt_var...
|
||
|
Qed.
|
||
|
|
||
|
(** The following lemma depends on [subst_tt_type] and
|
||
|
[subst_te_open_ee_var]. *)
|
||
|
|
||
|
Lemma subst_te_expr : forall Z P e,
|
||
|
expr e ->
|
||
|
type P ->
|
||
|
expr (subst_te Z P e).
|
||
|
Proof with eauto using subst_tt_type.
|
||
|
intros Z P e He Hp.
|
||
|
induction He; simpl; auto using subst_tt_type;
|
||
|
try solve [
|
||
|
econstructor;
|
||
|
try instantiate (1 := L `union` singleton Z);
|
||
|
intros;
|
||
|
try rewrite subst_te_open_ee_var;
|
||
|
try rewrite subst_te_open_te_var;
|
||
|
eauto using subst_tt_type
|
||
|
].
|
||
|
Qed.
|
||
|
|
||
|
(** The following lemma depends on [subst_ee_open_ee_var] and
|
||
|
[subst_ee_open_te_var]. *)
|
||
|
|
||
|
Lemma subst_ee_expr : forall z e1 e2,
|
||
|
expr e1 ->
|
||
|
expr e2 ->
|
||
|
expr (subst_ee z e2 e1).
|
||
|
Proof with auto.
|
||
|
intros z e1 e2 He1 He2.
|
||
|
induction He1; simpl; auto;
|
||
|
try solve [
|
||
|
econstructor;
|
||
|
try instantiate (1 := L `union` singleton z);
|
||
|
intros;
|
||
|
try rewrite subst_ee_open_ee_var;
|
||
|
try rewrite subst_ee_open_te_var;
|
||
|
auto
|
||
|
].
|
||
|
Case "expr_var".
|
||
|
destruct (x == z)...
|
||
|
Qed.
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
(* *********************************************************************** *)
|
||
|
(** * #<a name="auto"></a># Automation *)
|
||
|
|
||
|
(** We add as hints the fact that local closure is preserved under
|
||
|
substitution. This is part of our strategy for automatically
|
||
|
discharging local-closure proof obligations. *)
|
||
|
|
||
|
Hint Resolve subst_tt_type subst_te_expr subst_ee_expr.
|
||
|
|
||
|
|
||
|
|
||
|
(** When reasoning about the [binds] relation and [map], we
|
||
|
occasionally encounter situations where the binding is
|
||
|
over-simplified. The following hint undoes that simplification,
|
||
|
thus enabling [Hint]s from the [Environment] library. *)
|
||
|
|
||
|
Hint Extern 1 (binds _ (?F (subst_tt ?X ?U ?T)) _) =>
|
||
|
unsimpl (subst_tb X U (F T)).
|