coq: preliminary small-step semantics

This commit is contained in:
Michael Sippel 2024-07-24 11:20:13 +02:00
parent d8200b56b4
commit 04f9393b4f

51
coq/smallstep.v Normal file
View file

@ -0,0 +1,51 @@
From Coq Require Import Strings.String.
Require Import terms.
Require Import subst.
Include Terms.
Include Subst.
Module Smallstep.
Reserved Notation " s '-->α' t " (at level 40).
Reserved Notation " s '-->β' t " (at level 40).
Reserved Notation " s '-->δ' t " (at level 40).
Inductive beta_step : expr -> expr -> Prop :=
| E_AppLeft : forall e1 e1' e2,
e1 -->β e1' ->
(expr_tm_app e1 e2) -->β (expr_tm_app e1' e2)
| E_AppRight : forall e1 e2 e2',
e2 -->β e2' ->
(expr_tm_app e1 e2) -->β (expr_tm_app e1 e2')
| E_AppTmAbs : forall x τ e a,
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e)
| E_AppTyAbs : forall x e a,
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
| E_AppLet : forall x t e a,
(expr_let x t a e) -->β (expr_subst x a e)
where "s '-->β' t" := (beta_step s t).
(*
Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),
R x y ->
multi R y z ->
multi R x z.
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
*)
(*
Inductive delta_expand : expr -> expr -> Prop :=
| E_ImplicitCast
(expr_tm_app e1 e2)
*)
End Smallstep.