change meaning of expr_ascend to only explicitly state the top segment of the type ladder.
also add associativity of ladder types in type-equivalence
This commit is contained in:
parent
cae0572e1b
commit
12da3e97bd
4 changed files with 41 additions and 31 deletions
13
coq/equiv.v
13
coq/equiv.v
|
@ -218,6 +218,16 @@ Inductive type_eq : type_term -> type_term -> Prop :=
|
|||
y === z ->
|
||||
x === z
|
||||
|
||||
| TEq_LadderAssocLR : forall x y z,
|
||||
(type_ladder (type_ladder x y) z)
|
||||
===
|
||||
(type_ladder x (type_ladder y z))
|
||||
|
||||
| TEq_LadderAssocRL : forall x y z,
|
||||
(type_ladder x (type_ladder y z))
|
||||
===
|
||||
(type_ladder (type_ladder x y) z)
|
||||
|
||||
| TEq_Alpha : forall x y,
|
||||
x --->α y ->
|
||||
x === y
|
||||
|
@ -247,6 +257,9 @@ Proof.
|
|||
apply TEq_Trans with (y:=y).
|
||||
apply IHtype_eq2.
|
||||
apply IHtype_eq1.
|
||||
|
||||
apply TEq_LadderAssocRL.
|
||||
apply TEq_LadderAssocLR.
|
||||
|
||||
apply type_alpha_symm in H.
|
||||
apply TEq_Alpha.
|
||||
|
|
|
@ -52,7 +52,7 @@ Inductive translate_morphism_path : context -> type_term -> type_term -> expr_te
|
|||
(translate_morphism_path Γ τ τ' m) ->
|
||||
(translate_morphism_path Γ (type_ladder σ τ) (type_ladder σ τ')
|
||||
(expr_morph "x" (type_ladder σ τ)
|
||||
(expr_ascend (type_ladder σ τ') (expr_app m (expr_descend τ (expr_var "x"))))))
|
||||
(expr_ascend σ (expr_app m (expr_descend τ (expr_var "x"))))))
|
||||
|
||||
| Translate_Single : forall Γ h τ τ',
|
||||
(context_contains Γ h (type_morph τ τ')) ->
|
||||
|
|
|
@ -53,7 +53,7 @@ Proof.
|
|||
|
||||
(* Lift *)
|
||||
apply T_MorphAbs.
|
||||
apply T_Ascend with (τ:=τ').
|
||||
apply T_Ascend.
|
||||
apply T_App with (σ':=τ) (σ:=τ).
|
||||
apply T_MorphFun.
|
||||
apply typing_weakening.
|
||||
|
@ -63,7 +63,6 @@ Proof.
|
|||
apply C_take.
|
||||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||||
|
||||
(* Single *)
|
||||
apply T_Var.
|
||||
|
@ -216,14 +215,13 @@ Proof.
|
|||
apply typing_weakening.
|
||||
apply morphism_path_solves_type.
|
||||
apply H4.
|
||||
|
||||
|
||||
apply T_Descend with (τ:=(type_ladder σ τ0)).
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
|
||||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||||
apply IHtranslate_typing2.
|
||||
apply H1.
|
||||
|
||||
|
@ -309,10 +307,9 @@ Proof.
|
|||
apply H0.
|
||||
|
||||
(* e is Ascension *)
|
||||
apply T_Ascend with (τ:=τ).
|
||||
apply T_Ascend.
|
||||
apply IHtranslate_typing.
|
||||
apply H0.
|
||||
apply H1.
|
||||
|
||||
(* e is Desecension *)
|
||||
apply T_DescendImplicit with (τ:=τ).
|
||||
|
|
48
coq/typing.v
48
coq/typing.v
|
@ -61,8 +61,7 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
|
||||
| T_Ascend : forall Γ e τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
(τ' :<= τ) ->
|
||||
(Γ |- (expr_ascend τ' e) \is τ')
|
||||
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ))
|
||||
|
||||
| T_DescendImplicit : forall Γ x τ τ',
|
||||
Γ |- x \is τ ->
|
||||
|
@ -77,7 +76,8 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
Definition is_well_typed (e:expr_term) : Prop :=
|
||||
exists Γ τ,
|
||||
forall Γ,
|
||||
exists τ,
|
||||
Γ |- e \is τ
|
||||
.
|
||||
|
||||
|
@ -135,10 +135,9 @@ Inductive translate_typing : context -> expr_term -> type_term -> expr_term -> P
|
|||
|
||||
| Expand_Ascend : forall Γ e e' τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
(τ' :<= τ) ->
|
||||
(Γ |- (expr_ascend τ' e) \is τ') ->
|
||||
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ)) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(translate_typing Γ (expr_ascend τ' e) τ' (expr_ascend τ' e'))
|
||||
(translate_typing Γ (expr_ascend τ' e) (type_ladder τ' τ) (expr_ascend τ' e'))
|
||||
|
||||
| Expand_Descend : forall Γ e e' τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
|
@ -219,7 +218,6 @@ Example typing4 : (is_well_typed
|
|||
).
|
||||
Proof.
|
||||
unfold is_well_typed.
|
||||
exists ctx_empty.
|
||||
exists [< ∀"T",∀"U",%"T"%->%"U"%->%"T"% >].
|
||||
apply T_TypeAbs.
|
||||
apply T_TypeAbs.
|
||||
|
@ -231,24 +229,29 @@ Qed.
|
|||
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Example typing5 : (is_well_typed
|
||||
Example typing5 :
|
||||
(ctx_assign "60" [< $"ℝ"$ >]
|
||||
(ctx_assign "360" [< $"ℝ"$ >]
|
||||
(ctx_assign "/" [< $"ℝ"$ -> $"ℝ"$ -> $"ℝ"$ >]
|
||||
ctx_empty)))
|
||||
|-
|
||||
[{
|
||||
let "deg2turns" :=
|
||||
(λ"x" $"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$~$"ℝ"$))
|
||||
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$~$"ℝ"$) )
|
||||
↦morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$))
|
||||
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
|
||||
}]
|
||||
).
|
||||
\is
|
||||
[<
|
||||
$"Angle"$~$"Turns"$~$"ℝ"$
|
||||
>]
|
||||
.
|
||||
Proof.
|
||||
unfold is_well_typed.
|
||||
exists (ctx_assign "60" [< $"ℝ"$ >]
|
||||
(ctx_assign "360" [< $"ℝ"$ >]
|
||||
(ctx_assign "/" [< $"ℝ"$ -> $"ℝ"$ -> $"ℝ"$ >]
|
||||
ctx_empty))).
|
||||
exists [< $"Angle"$~$"Turns"$~$"ℝ"$ >].
|
||||
apply T_Let with (σ:=[< $"Angle"$~$"Degrees"$~$"ℝ"$ ->morph $"Angle"$~$"Turns"$~$"ℝ"$ >]).
|
||||
apply T_MorphAbs.
|
||||
apply T_Ascend with (τ:=[< $"ℝ"$ >]).
|
||||
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Turns"$>] [<$"ℝ"$>])).
|
||||
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
|
||||
apply T_Ascend with (τ:=[<$"ℝ"$>]) (τ':=[<$"Angle"$~$"Turns"$>]).
|
||||
apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]).
|
||||
apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]).
|
||||
apply T_Var.
|
||||
|
@ -265,18 +268,15 @@ Proof.
|
|||
apply M_Sub.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
apply TSubRepr_Ladder, TSubRepr_Ladder, TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
apply T_App with (σ:=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]) (σ':=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]).
|
||||
apply T_MorphFun.
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply T_Ascend with (τ:=[<$"ℝ"$>]).
|
||||
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Degrees"$>] [<$"ℝ"$>])).
|
||||
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
|
||||
apply T_Ascend.
|
||||
apply T_Var.
|
||||
apply C_shuffle. apply C_take.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl. apply TEq_Refl.
|
||||
apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl.
|
||||
Qed.
|
||||
|
||||
|
|
Loading…
Reference in a new issue