coq: smallstep: define delta expansion

This commit is contained in:
Michael Sippel 2024-07-25 12:42:32 +02:00
parent ec955c3c19
commit 13165a7951
Signed by: senvas
GPG key ID: F96CF119C34B64A6

View file

@ -1,51 +1,76 @@
From Coq Require Import Strings.String. From Coq Require Import Strings.String.
Require Import terms. Require Import terms.
Require Import subst. Require Import subst.
Require Import typing.
Include Terms. Include Terms.
Include Subst. Include Subst.
Include Typing.
Module Smallstep. Module Smallstep.
Reserved Notation " s '-->α' t " (at level 40).
Reserved Notation " s '-->β' t " (at level 40). Reserved Notation " s '-->β' t " (at level 40).
Reserved Notation " s '-->δ' t " (at level 40). Reserved Notation " s '-->δ' t " (at level 40).
Reserved Notation " s '-->eval' t " (at level 40).
Inductive beta_step : expr_term -> expr_term -> Prop := Inductive beta_step : expr_term -> expr_term -> Prop :=
| E_AppLeft : forall e1 e1' e2, | E_App1 : forall e1 e1' e2,
e1 -->β e1' -> e1 -->β e1' ->
(expr_tm_app e1 e2) -->β (expr_tm_app e1' e2) (expr_tm_app e1 e2) -->β (expr_tm_app e1' e2)
| E_AppRight : forall e1 e2 e2', | E_App2 : forall e1 e2 e2',
e2 -->β e2' -> e2 -->β e2' ->
(expr_tm_app e1 e2) -->β (expr_tm_app e1 e2') (expr_tm_app e1 e2) -->β (expr_tm_app e1 e2')
| E_AppTmAbs : forall x τ e a, | E_TypApp : forall e e' τ,
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e) e -->β e' ->
(expr_ty_app e τ) -->β (expr_ty_app e' τ)
| E_AppTyAbs : forall x e a, | E_TypAppLam : forall x e a,
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e) (expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
| E_AppLam : forall x τ e a,
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e)
| E_AppLet : forall x t e a, | E_AppLet : forall x t e a,
(expr_let x t a e) -->β (expr_subst x a e) (expr_let x t a e) -->β (expr_subst x a e)
where "s '-->β' t" := (beta_step s t). where "s '-->β' t" := (beta_step s t).
(*
Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x Inductive delta_step : expr_term -> expr_term -> Prop :=
| multi_step : forall (x y z : X),
| E_ImplicitCast : forall (Γ:context) (f:expr_term) (h:string) (a:expr_term) (τ:type_term) (s:type_term) (p:type_term),
(context_contains Γ h (type_morph p s)) ->
Γ |- f \is (type_fun s τ) ->
Γ |- a \is p ->
(expr_tm_app f a) -->δ (expr_tm_app f (expr_tm_app (expr_var h) a))
where "s '-->δ' t" := (delta_step s t).
Inductive eval_step : expr_term -> expr_term -> Prop :=
| E_Beta : forall s t,
(s -->β t) ->
(s -->eval t)
| E_Delta : forall s t,
(s -->δ t) ->
(s -->eval t)
where "s '-->eval' t" := (eval_step s t).
Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
| Multi_Refl : forall (x : X), multi R x x
| Multi_Step : forall (x y z : X),
R x y -> R x y ->
multi R y z -> multi R y z ->
multi R x z. multi R x z.
Notation " s -->β* t " := (multi beta_step s t) (at level 40). Notation " s -->β* t " := (multi beta_step s t) (at level 40).
*) Notation " s -->δ* t " := (multi delta_step s t) (at level 40).
Notation " s -->eval* t " := (multi eval_step s t) (at level 40).
(*
Inductive delta_expand : expr_term -> expr_term -> Prop :=
| E_ImplicitCast
(expr_tm_app e1 e2)
*)
End Smallstep. End Smallstep.