coq: smallstep: define delta expansion
This commit is contained in:
parent
ec955c3c19
commit
13165a7951
1 changed files with 42 additions and 17 deletions
|
@ -1,51 +1,76 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import typing.
|
||||
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
Include Typing.
|
||||
|
||||
Module Smallstep.
|
||||
|
||||
Reserved Notation " s '-->α' t " (at level 40).
|
||||
Reserved Notation " s '-->β' t " (at level 40).
|
||||
Reserved Notation " s '-->δ' t " (at level 40).
|
||||
Reserved Notation " s '-->eval' t " (at level 40).
|
||||
|
||||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||||
| E_AppLeft : forall e1 e1' e2,
|
||||
| E_App1 : forall e1 e1' e2,
|
||||
e1 -->β e1' ->
|
||||
(expr_tm_app e1 e2) -->β (expr_tm_app e1' e2)
|
||||
|
||||
| E_AppRight : forall e1 e2 e2',
|
||||
| E_App2 : forall e1 e2 e2',
|
||||
e2 -->β e2' ->
|
||||
(expr_tm_app e1 e2) -->β (expr_tm_app e1 e2')
|
||||
|
||||
| E_AppTmAbs : forall x τ e a,
|
||||
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e)
|
||||
| E_TypApp : forall e e' τ,
|
||||
e -->β e' ->
|
||||
(expr_ty_app e τ) -->β (expr_ty_app e' τ)
|
||||
|
||||
| E_AppTyAbs : forall x e a,
|
||||
| E_TypAppLam : forall x e a,
|
||||
(expr_ty_app (expr_ty_abs x e) a) -->β (expr_specialize x a e)
|
||||
|
||||
| E_AppLam : forall x τ e a,
|
||||
(expr_tm_app (expr_tm_abs x τ e) a) -->β (expr_subst x a e)
|
||||
|
||||
| E_AppLet : forall x t e a,
|
||||
(expr_let x t a e) -->β (expr_subst x a e)
|
||||
|
||||
where "s '-->β' t" := (beta_step s t).
|
||||
|
||||
(*
|
||||
Inductive multi {X : Type} (R : relation X) : relation X :=
|
||||
| multi_refl : forall (x : X), multi R x x
|
||||
| multi_step : forall (x y z : X),
|
||||
|
||||
|
||||
Inductive delta_step : expr_term -> expr_term -> Prop :=
|
||||
|
||||
| E_ImplicitCast : forall (Γ:context) (f:expr_term) (h:string) (a:expr_term) (τ:type_term) (s:type_term) (p:type_term),
|
||||
|
||||
(context_contains Γ h (type_morph p s)) ->
|
||||
Γ |- f \is (type_fun s τ) ->
|
||||
Γ |- a \is p ->
|
||||
(expr_tm_app f a) -->δ (expr_tm_app f (expr_tm_app (expr_var h) a))
|
||||
|
||||
where "s '-->δ' t" := (delta_step s t).
|
||||
|
||||
|
||||
Inductive eval_step : expr_term -> expr_term -> Prop :=
|
||||
| E_Beta : forall s t,
|
||||
(s -->β t) ->
|
||||
(s -->eval t)
|
||||
|
||||
| E_Delta : forall s t,
|
||||
(s -->δ t) ->
|
||||
(s -->eval t)
|
||||
|
||||
where "s '-->eval' t" := (eval_step s t).
|
||||
|
||||
Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
|
||||
| Multi_Refl : forall (x : X), multi R x x
|
||||
| Multi_Step : forall (x y z : X),
|
||||
R x y ->
|
||||
multi R y z ->
|
||||
multi R x z.
|
||||
|
||||
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
|
||||
*)
|
||||
|
||||
(*
|
||||
Inductive delta_expand : expr_term -> expr_term -> Prop :=
|
||||
| E_ImplicitCast
|
||||
(expr_tm_app e1 e2)
|
||||
*)
|
||||
Notation " s -->δ* t " := (multi delta_step s t) (at level 40).
|
||||
Notation " s -->eval* t " := (multi eval_step s t) (at level 40).
|
||||
|
||||
End Smallstep.
|
||||
|
|
Loading…
Reference in a new issue