coq: reimplement type substitution and alpha conversion in types
This commit is contained in:
parent
0caf3ff514
commit
361d03c117
2 changed files with 151 additions and 18 deletions
72
coq/equiv.v
72
coq/equiv.v
|
@ -29,6 +29,7 @@
|
||||||
* rewrite-step of each other, `===` is symmetric and thus `===`
|
* rewrite-step of each other, `===` is symmetric and thus `===`
|
||||||
* satisfies all properties required of an equivalence relation.
|
* satisfies all properties required of an equivalence relation.
|
||||||
*)
|
*)
|
||||||
|
|
||||||
Require Import terms.
|
Require Import terms.
|
||||||
Require Import subst.
|
Require Import subst.
|
||||||
From Coq Require Import Strings.String.
|
From Coq Require Import Strings.String.
|
||||||
|
@ -41,17 +42,55 @@ Module Equiv.
|
||||||
|
|
||||||
(** Alpha conversion in types *)
|
(** Alpha conversion in types *)
|
||||||
|
|
||||||
Reserved Notation "S '-->α' T" (at level 40).
|
Reserved Notation "S '--->α' T" (at level 40).
|
||||||
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
||||||
| TEq_Alpha : forall x y t,
|
| TAlpha_Rename : forall x y t t',
|
||||||
(type_univ x t) -->α (type_univ y (type_subst x (type_var y) t))
|
|
||||||
where "S '-->α' T" := (type_conv_alpha S T).
|
(type_subst1 x (type_var y) t t') ->
|
||||||
|
(type_univ x t) --->α (type_univ y t')
|
||||||
|
|
||||||
|
| TAlpha_SubUniv : forall x τ τ',
|
||||||
|
(τ --->α τ') ->
|
||||||
|
(type_univ x τ) --->α (type_univ x τ')
|
||||||
|
|
||||||
|
| TAlpha_SubSpec1 : forall τ1 τ1' τ2,
|
||||||
|
(τ1 --->α τ1') ->
|
||||||
|
(type_spec τ1 τ2) --->α (type_spec τ1' τ2)
|
||||||
|
|
||||||
|
| TAlpha_SubSpec2 : forall τ1 τ2 τ2',
|
||||||
|
(τ2 --->α τ2') ->
|
||||||
|
(type_spec τ1 τ2) --->α (type_spec τ1 τ2')
|
||||||
|
|
||||||
|
| TAlpha_SubFun1 : forall τ1 τ1' τ2,
|
||||||
|
(τ1 --->α τ1') ->
|
||||||
|
(type_fun τ1 τ2) --->α (type_fun τ1' τ2)
|
||||||
|
|
||||||
|
| TAlpha_SubFun2 : forall τ1 τ2 τ2',
|
||||||
|
(τ2 --->α τ2') ->
|
||||||
|
(type_fun τ1 τ2) --->α (type_fun τ1 τ2')
|
||||||
|
|
||||||
|
| TAlpha_SubMorph1 : forall τ1 τ1' τ2,
|
||||||
|
(τ1 --->α τ1') ->
|
||||||
|
(type_morph τ1 τ2) --->α (type_morph τ1' τ2)
|
||||||
|
|
||||||
|
| TAlpha_SubMorph2 : forall τ1 τ2 τ2',
|
||||||
|
(τ2 --->α τ2') ->
|
||||||
|
(type_morph τ1 τ2) --->α (type_morph τ1 τ2')
|
||||||
|
|
||||||
|
| TAlpha_SubLadder1 : forall τ1 τ1' τ2,
|
||||||
|
(τ1 --->α τ1') ->
|
||||||
|
(type_ladder τ1 τ2) --->α (type_ladder τ1' τ2)
|
||||||
|
|
||||||
|
| TAlpha_SubLadder2 : forall τ1 τ2 τ2',
|
||||||
|
(τ2 --->α τ2') ->
|
||||||
|
(type_ladder τ1 τ2) --->α (type_ladder τ1 τ2')
|
||||||
|
|
||||||
|
where "S '--->α' T" := (type_conv_alpha S T).
|
||||||
|
|
||||||
(** Alpha conversion is symmetric *)
|
(** Alpha conversion is symmetric *)
|
||||||
|
|
||||||
Lemma type_alpha_symm :
|
Lemma type_alpha_symm :
|
||||||
forall σ τ,
|
forall σ τ,
|
||||||
(σ -->α τ) -> (τ -->α σ).
|
(σ --->α τ) -> (τ --->α σ).
|
||||||
Proof.
|
Proof.
|
||||||
(* TODO *)
|
(* TODO *)
|
||||||
Admitted.
|
Admitted.
|
||||||
|
@ -179,8 +218,8 @@ Inductive type_eq : type_term -> type_term -> Prop :=
|
||||||
y === z ->
|
y === z ->
|
||||||
x === z
|
x === z
|
||||||
|
|
||||||
| TEq_Rename : forall x y,
|
| TEq_Alpha : forall x y,
|
||||||
x -->α y ->
|
x --->α y ->
|
||||||
x === y
|
x === y
|
||||||
|
|
||||||
| TEq_Distribute : forall x y,
|
| TEq_Distribute : forall x y,
|
||||||
|
@ -196,7 +235,7 @@ where "S '===' T" := (type_eq S T).
|
||||||
|
|
||||||
|
|
||||||
(** Symmetry of === *)
|
(** Symmetry of === *)
|
||||||
Lemma type_eq_is_symmetric :
|
Lemma TEq_Symm :
|
||||||
forall x y,
|
forall x y,
|
||||||
(x === y) -> (y === x).
|
(x === y) -> (y === x).
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -210,7 +249,7 @@ Proof.
|
||||||
apply IHtype_eq1.
|
apply IHtype_eq1.
|
||||||
|
|
||||||
apply type_alpha_symm in H.
|
apply type_alpha_symm in H.
|
||||||
apply TEq_Rename.
|
apply TEq_Alpha.
|
||||||
apply H.
|
apply H.
|
||||||
|
|
||||||
apply TEq_Condense.
|
apply TEq_Condense.
|
||||||
|
@ -268,18 +307,21 @@ Proof.
|
||||||
intros τ H.
|
intros τ H.
|
||||||
induction τ.
|
induction τ.
|
||||||
|
|
||||||
left.
|
|
||||||
apply FlatUnit.
|
|
||||||
|
|
||||||
left.
|
left.
|
||||||
apply FlatId.
|
apply FlatId.
|
||||||
|
|
||||||
left.
|
left.
|
||||||
apply FlatVar.
|
apply FlatVar.
|
||||||
|
(*
|
||||||
left.
|
left.
|
||||||
apply FlatNum.
|
apply IHτ1 in H.
|
||||||
|
apply FlatFun.
|
||||||
|
apply H.
|
||||||
|
destruct H.
|
||||||
|
destruct H.
|
||||||
|
|
||||||
|
apply IHτ1.
|
||||||
|
*)
|
||||||
admit.
|
admit.
|
||||||
admit.
|
admit.
|
||||||
admit.
|
admit.
|
||||||
|
|
93
coq/subst.v
93
coq/subst.v
|
@ -1,9 +1,62 @@
|
||||||
From Coq Require Import Strings.String.
|
From Coq Require Import Strings.String.
|
||||||
Require Import terms.
|
Require Import terms.
|
||||||
|
|
||||||
Include Terms.
|
Include Terms.
|
||||||
|
|
||||||
Module Subst.
|
Module Subst.
|
||||||
|
|
||||||
|
(* Type Variable "x" is a free variable in type *)
|
||||||
|
Inductive type_var_free (x:string) : type_term -> Prop :=
|
||||||
|
| TFree_Var :
|
||||||
|
(type_var_free x (type_var x))
|
||||||
|
|
||||||
|
| TFree_Ladder : forall τ1 τ2,
|
||||||
|
(type_var_free x τ1) ->
|
||||||
|
(type_var_free x τ2) ->
|
||||||
|
(type_var_free x (type_ladder τ1 τ2))
|
||||||
|
|
||||||
|
| TFree_Fun : forall τ1 τ2,
|
||||||
|
(type_var_free x τ1) ->
|
||||||
|
(type_var_free x τ2) ->
|
||||||
|
(type_var_free x (type_fun τ1 τ2))
|
||||||
|
|
||||||
|
| TFree_Morph : forall τ1 τ2,
|
||||||
|
(type_var_free x τ1) ->
|
||||||
|
(type_var_free x τ2) ->
|
||||||
|
(type_var_free x (type_morph τ1 τ2))
|
||||||
|
|
||||||
|
| TFree_Spec : forall τ1 τ2,
|
||||||
|
(type_var_free x τ1) ->
|
||||||
|
(type_var_free x τ2) ->
|
||||||
|
(type_var_free x (type_spec τ1 τ2))
|
||||||
|
|
||||||
|
| TFree_Univ : forall y τ,
|
||||||
|
~(y = x) ->
|
||||||
|
(type_var_free x τ) ->
|
||||||
|
(type_var_free x (type_univ y τ))
|
||||||
|
.
|
||||||
|
|
||||||
|
|
||||||
|
Open Scope ladder_type_scope.
|
||||||
|
Example ex_type_free_var1 :
|
||||||
|
(type_var_free "T" (type_univ "U" (type_var "T")))
|
||||||
|
.
|
||||||
|
Proof.
|
||||||
|
apply TFree_Univ.
|
||||||
|
easy.
|
||||||
|
apply TFree_Var.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Open Scope ladder_type_scope.
|
||||||
|
Example ex_type_free_var2 :
|
||||||
|
~(type_var_free "T" (type_univ "T" (type_var "T")))
|
||||||
|
.
|
||||||
|
Proof.
|
||||||
|
intro H.
|
||||||
|
inversion H.
|
||||||
|
contradiction.
|
||||||
|
Qed.
|
||||||
|
|
||||||
(* scoped variable substitution in type terms $\label{coq:subst-type}$ *)
|
(* scoped variable substitution in type terms $\label{coq:subst-type}$ *)
|
||||||
Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) :=
|
Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) :=
|
||||||
match t0 with
|
match t0 with
|
||||||
|
@ -15,6 +68,44 @@ Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) :=
|
||||||
| t => t
|
| t => t
|
||||||
end.
|
end.
|
||||||
|
|
||||||
|
Inductive type_subst1 (x:string) (σ:type_term) : type_term -> type_term -> Prop :=
|
||||||
|
| TSubst_VarReplace :
|
||||||
|
(type_subst1 x σ (type_var x) σ)
|
||||||
|
|
||||||
|
| TSubst_VarKeep : forall y,
|
||||||
|
~(x = y) ->
|
||||||
|
(type_subst1 x σ (type_var y) (type_var y))
|
||||||
|
|
||||||
|
| TSubst_UnivReplace : forall y τ τ',
|
||||||
|
~(x = y) ->
|
||||||
|
~(type_var_free y σ) ->
|
||||||
|
(type_subst1 x σ τ τ') ->
|
||||||
|
(type_subst1 x σ (type_univ y τ) (type_univ y τ'))
|
||||||
|
|
||||||
|
| TSubst_Id : forall n,
|
||||||
|
(type_subst1 x σ (type_id n) (type_id n))
|
||||||
|
|
||||||
|
| TSubst_Spec : forall τ1 τ2 τ1' τ2',
|
||||||
|
(type_subst1 x σ τ1 τ1') ->
|
||||||
|
(type_subst1 x σ τ2 τ2') ->
|
||||||
|
(type_subst1 x σ (type_spec τ1 τ2) (type_spec τ1' τ2'))
|
||||||
|
|
||||||
|
| TSubst_Fun : forall τ1 τ1' τ2 τ2',
|
||||||
|
(type_subst1 x σ τ1 τ1') ->
|
||||||
|
(type_subst1 x σ τ2 τ2') ->
|
||||||
|
(type_subst1 x σ (type_fun τ1 τ2) (type_fun τ1' τ2'))
|
||||||
|
|
||||||
|
| TSubst_Morph : forall τ1 τ1' τ2 τ2',
|
||||||
|
(type_subst1 x σ τ1 τ1') ->
|
||||||
|
(type_subst1 x σ τ2 τ2') ->
|
||||||
|
(type_subst1 x σ (type_morph τ1 τ2) (type_morph τ1' τ2'))
|
||||||
|
|
||||||
|
| TSubst_Ladder : forall τ1 τ1' τ2 τ2',
|
||||||
|
(type_subst1 x σ τ1 τ1') ->
|
||||||
|
(type_subst1 x σ τ2 τ2') ->
|
||||||
|
(type_subst1 x σ (type_ladder τ1 τ2) (type_ladder τ1' τ2'))
|
||||||
|
.
|
||||||
|
|
||||||
(* scoped variable substitution, replaces free occurences of v with n in expression e *)
|
(* scoped variable substitution, replaces free occurences of v with n in expression e *)
|
||||||
Fixpoint expr_subst (v:string) (n:expr_term) (e0:expr_term) :=
|
Fixpoint expr_subst (v:string) (n:expr_term) (e0:expr_term) :=
|
||||||
match e0 with
|
match e0 with
|
||||||
|
|
Loading…
Reference in a new issue