add expr_open_lc and expr_subst_open lemmas
This commit is contained in:
parent
080aa0ffec
commit
3d200e141e
1 changed files with 95 additions and 1 deletions
|
@ -1,3 +1,5 @@
|
||||||
|
From Coq Require Import Lists.List.
|
||||||
|
Import ListNotations.
|
||||||
Require Import Atom.
|
Require Import Atom.
|
||||||
Require Import Metatheory.
|
Require Import Metatheory.
|
||||||
Require Import FSetNotin.
|
Require Import FSetNotin.
|
||||||
|
@ -103,7 +105,7 @@ Lemma type_open_lc_core : forall (τ:type_DeBruijn) i (σ1:type_DeBruijn) j (σ2
|
||||||
{i ~tt~> σ1} τ = {j ~tt~> σ2} ({i ~tt~> σ1} τ) ->
|
{i ~tt~> σ1} τ = {j ~tt~> σ2} ({i ~tt~> σ1} τ) ->
|
||||||
({j ~tt~> σ2} τ) = τ
|
({j ~tt~> σ2} τ) = τ
|
||||||
.
|
.
|
||||||
Proof with eauto*.
|
Proof.
|
||||||
induction τ;
|
induction τ;
|
||||||
intros i σ1 j σ2 Neq H;
|
intros i σ1 j σ2 Neq H;
|
||||||
simpl in *;
|
simpl in *;
|
||||||
|
@ -181,3 +183,95 @@ Proof.
|
||||||
reflexivity.
|
reflexivity.
|
||||||
trivial.
|
trivial.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Lemma expr_open_lc_core : forall (t:expr_DeBruijn) i (s1:expr_DeBruijn) j (s2:expr_DeBruijn),
|
||||||
|
i <> j ->
|
||||||
|
{i ~ee~> s1} t = {j ~ee~> s2} ({i ~ee~> s1} t) ->
|
||||||
|
({j ~ee~> s2} t) = t
|
||||||
|
.
|
||||||
|
Proof.
|
||||||
|
induction t;
|
||||||
|
intros i s1 j s2 Neq H;
|
||||||
|
simpl in *;
|
||||||
|
inversion H;
|
||||||
|
f_equal; eauto.
|
||||||
|
|
||||||
|
(* bound var *)
|
||||||
|
- simpl in *.
|
||||||
|
destruct (j === n).
|
||||||
|
destruct (i === n).
|
||||||
|
3:reflexivity.
|
||||||
|
|
||||||
|
rewrite e,e0 in Neq.
|
||||||
|
contradiction Neq.
|
||||||
|
reflexivity.
|
||||||
|
|
||||||
|
rewrite H,e.
|
||||||
|
simpl.
|
||||||
|
destruct (n===n).
|
||||||
|
reflexivity.
|
||||||
|
contradict n1.
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
(*
|
||||||
|
* opening is idempotent on locally closed expressions
|
||||||
|
*)
|
||||||
|
Lemma expr_open_lc : forall k s t,
|
||||||
|
expr_lc t ->
|
||||||
|
({ k ~ee~> s } t) = t
|
||||||
|
.
|
||||||
|
Proof.
|
||||||
|
intros.
|
||||||
|
generalize dependent k.
|
||||||
|
induction H; eauto; simpl in *; intro k; f_equal; eauto.
|
||||||
|
|
||||||
|
- unfold expr_open in *.
|
||||||
|
pick fresh x for L.
|
||||||
|
apply expr_open_lc_core with (i:=0) (s1:=(ex_fvar x)) (j:=S k) (s2:=s).
|
||||||
|
discriminate.
|
||||||
|
apply eq_sym, H1.
|
||||||
|
assumption.
|
||||||
|
|
||||||
|
- unfold expr_open in *.
|
||||||
|
pick fresh x for L.
|
||||||
|
apply expr_open_lc_core with (i:=0) (s1:=(ex_fvar x)) (j:=S k) (s2:=s).
|
||||||
|
discriminate.
|
||||||
|
apply eq_sym, H1.
|
||||||
|
assumption.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(*
|
||||||
|
* type substitution distributes over opening
|
||||||
|
*)
|
||||||
|
Lemma expr_subst_open : forall t s1 s2 x k,
|
||||||
|
expr_lc s2 ->
|
||||||
|
|
||||||
|
[x ~ee~> s2] ({k ~ee~> s1} t)
|
||||||
|
=
|
||||||
|
{k ~ee~> [x ~ee~> s2] s1} ([x ~ee~> s2] t).
|
||||||
|
Proof.
|
||||||
|
induction t;
|
||||||
|
intros; simpl; f_equal; auto.
|
||||||
|
|
||||||
|
(* free var *)
|
||||||
|
- destruct (x == a).
|
||||||
|
subst.
|
||||||
|
apply eq_sym, expr_open_lc.
|
||||||
|
assumption.
|
||||||
|
trivial.
|
||||||
|
|
||||||
|
(* bound var *)
|
||||||
|
- destruct (k === n).
|
||||||
|
reflexivity.
|
||||||
|
trivial.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue