paper: simplify pseudo grammar
This commit is contained in:
parent
f135a5ed43
commit
3f27afa253
1 changed files with 77 additions and 87 deletions
162
paper/main.tex
162
paper/main.tex
|
@ -1,4 +1,4 @@
|
|||
\documentclass[10pt, nonacm]{acmart}
|
||||
\documentclass[10pt, sigplan, nonacm]{acmart}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{formal-grammar}
|
||||
|
@ -73,151 +73,139 @@ which are already known from SystemF,
|
|||
types can be of the form \(\tau_1 \sim \tau_2\) to denote a \emph{ladder type} to formalizes the notion of a type \(\tau_1\) being represented in terms of type \(\tau_2\).
|
||||
Similar to SystemF, expressions can be \emph{variables}, \emph{type-abstractions}, \emph{}
|
||||
|
||||
Coq definitions of the abstract syntax can be found in \hyperref[coq:terms]{\texttt{terms.v}}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\label{gr:core}
|
||||
|
||||
\begin{grammar}
|
||||
\firstcase{ T_\seltype \textsf{$(\typenames, \typevars)$} }{
|
||||
|
||||
\firstcase{ T }{
|
||||
\metavariable{\sigma}
|
||||
}{Type Literal \quad \textsf{where $ \metavariable{\sigma} \in \typenames $}}
|
||||
}{Base Type}
|
||||
|
||||
\otherform{
|
||||
\metavariable{\alpha}
|
||||
}{Type Variable \quad \textsf{where $ \metavariable{\alpha} \in \typevars $}}
|
||||
}{Type Variable}
|
||||
|
||||
\otherform{
|
||||
$$\typeterminal{\forall}$$ \metavariable{\alpha} \typeterminal{.} \quad \typenonterm{\typevars \cup \{\metavariable{\alpha}\}}
|
||||
\typeterminal{\forall} \metavariable{\alpha} \typeterminal{.} \nonterm{T}
|
||||
}{Universal Type}
|
||||
|
||||
\otherform{
|
||||
\typeterminal{<} \typenonterm{\typevars} \quad \typenonterm{\typevars} \typeterminal{>}
|
||||
}{Specialization}
|
||||
\typeterminal{<} \nonterm{T} \quad \nonterm{T} \typeterminal{>}
|
||||
}{Specialized Type}
|
||||
|
||||
\otherform{
|
||||
\typenonterm{\typevars}
|
||||
\quad $$\typeterminal{\rightarrow}$$ \quad
|
||||
\typenonterm{\typevars}
|
||||
\nonterm{T} \quad \typeterminal{\rightarrow} \quad \nonterm{T}
|
||||
}{Function Type}
|
||||
|
||||
\otherform{
|
||||
\typenonterm{\typevars}
|
||||
\quad $$\typeterminal{\rightarrow_{morph}}$$ \quad
|
||||
\typenonterm{\typevars}
|
||||
\nonterm{T} \quad \typeterminal{\rightarrow_\text{morph}} \quad \nonterm{T}
|
||||
}{Morphism Type}
|
||||
|
||||
\otherform{
|
||||
\typenonterm{\typevars}
|
||||
\quad $$\typeterminal{\sim}$$ \quad
|
||||
\typenonterm{\typevars}
|
||||
\nonterm{T} \quad \typeterminal{\sim} \quad \nonterm{T}
|
||||
}{Ladder Type}
|
||||
|
||||
\otherform{
|
||||
$$\typeterminal{(}$$ \quad
|
||||
\typenonterm{\typevars}
|
||||
\quad $$\typeterminal{)}$$
|
||||
}{Parenthesis}
|
||||
|
||||
|
||||
|
||||
|
||||
$$\\$$
|
||||
|
||||
|
||||
|
||||
\firstcase{ T_\selexpr \textsc{$(\typenames, \typevars, \exprvars)$} }
|
||||
\firstcase{ E
|
||||
% T_\selexpr
|
||||
}
|
||||
{ \metavariable{x}
|
||||
} {Variable \quad \textsf{where $\metavariable{x} \in \exprvars$} }
|
||||
} {Variable}
|
||||
|
||||
\otherform{
|
||||
$$ \exprterminal{\Lambda} \metavariable{\alpha}
|
||||
\quad \exprterminal{\mapsto} \quad $$
|
||||
\exprnonterm{\typevars \cup \{\metavariable{\alpha}\}}{\exprvars}
|
||||
\nonterm{ E }
|
||||
}{Type Abstraction}
|
||||
|
||||
\otherform{
|
||||
$$ \exprterminal{\lambda} \metavariable{x} $$
|
||||
\exprterminal{:} \typenonterm{\typevars}
|
||||
\exprterminal{:} \nonterm{ T }
|
||||
\quad $$\exprterminal{\mapsto}$$ \quad
|
||||
\exprnonterm{\typevars}{\exprvars \cup \{\metavariable{x}\}}
|
||||
\nonterm{ E }
|
||||
}{Value Abstraction}
|
||||
|
||||
\otherform{
|
||||
$$ \exprterminal{\lambda} \metavariable{x} $$
|
||||
\exprterminal{:} \typenonterm{\typevars}
|
||||
\quad $$\exprterminal{\mapsto_{morph}}$$ \quad
|
||||
\exprnonterm{\typevars}{\exprvars \cup \{\metavariable{x}\}}
|
||||
\exprterminal{:} \nonterm{ T }
|
||||
\quad $$\exprterminal{\mapsto_\text{morph}}$$ \quad
|
||||
\nonterm{ E }
|
||||
}{Value Morphism}
|
||||
|
||||
\otherform{
|
||||
\exprterminal{let} \quad \metavariable{x} \quad \exprterminal{=} \quad
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\nonterm{ E }
|
||||
\quad \exprterminal{in} \quad
|
||||
\exprnonterm{\typevars}{\exprvars \cup \{\metavariable{x}\}}
|
||||
\nonterm{ E }
|
||||
}{Variable Binding}
|
||||
|
||||
\otherform{
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\nonterm{ E }
|
||||
\quad
|
||||
\typenonterm{\typevars}
|
||||
\nonterm{ T }
|
||||
}{Type Application}
|
||||
|
||||
\otherform{
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\nonterm{ E }
|
||||
\quad
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\nonterm{ E }
|
||||
}{Value Application}
|
||||
|
||||
\otherform{
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\nonterm{ E }
|
||||
\quad
|
||||
\exprterminal{as}
|
||||
\quad
|
||||
\typenonterm{\typevars}
|
||||
}{Type Cast}
|
||||
\nonterm{ T }
|
||||
}{Up-Cast}
|
||||
|
||||
\otherform{
|
||||
\exprterminal{(} \quad
|
||||
\exprnonterm{\typevars}{\exprvars}
|
||||
\quad \exprterminal{)}
|
||||
}{Parenthesis}
|
||||
\nonterm{ E }
|
||||
\quad
|
||||
\exprterminal{to}
|
||||
\quad
|
||||
\nonterm{ T }
|
||||
}{Transformation}
|
||||
\otherform{\exprterminal{(} \quad \nonterm{E} \quad \exprterminal{)}}{Parenthesis}
|
||||
|
||||
|
||||
$$\\$$
|
||||
|
||||
\firstcase{ T_\textsc{Val} \textsc{$(\typenames, \typevars, \exprvars)$} }{
|
||||
\firstcase{V}{
|
||||
\exprterminal{\epsilon}
|
||||
}{Empty Value}
|
||||
|
||||
\otherform{
|
||||
\metavariable{x} \quad \valnonterm{\typevars}{\exprvars}
|
||||
}{Value Conactenation}
|
||||
|
||||
\otherform{
|
||||
\exprterminal{\Lambda} \metavariable{\alpha} \quad
|
||||
\exprterminal{\mapsto} \quad
|
||||
\valnonterm{ \typevars \cup \{ \metavariable{\alpha} \} }
|
||||
\{Type-Function Value}
|
||||
\nonterm{ V }
|
||||
}{Type-Abstraction Value}
|
||||
|
||||
\otherform{
|
||||
\exprterminal{\lambda} \metavariable{x} \quad
|
||||
\exprterminal{:} \quad
|
||||
\typenonterm{\emptyset} \quad
|
||||
\exprterminal{\lambda} \metavariable{x}
|
||||
\exprterminal{:}
|
||||
\nonterm{ T } \quad
|
||||
\exprterminal{\mapsto} \quad
|
||||
\exprnonterm{\typevars}{\{\metavariable{x}\}}
|
||||
}{Function Value}
|
||||
\nonterm{ E }
|
||||
}{Abstraction Value}
|
||||
|
||||
\otherform{
|
||||
\valnonterm{ \typevars } \quad
|
||||
\nonterm{ V } \quad
|
||||
\exprterminal{as} \quad
|
||||
\typenonterm{ \typevars }
|
||||
}{Value}
|
||||
\nonterm{ T }
|
||||
}{Cast Value}
|
||||
|
||||
\end{grammar}
|
||||
|
||||
|
||||
|
||||
\caption{Syntax of the core calculus with colors for \metavariable{metavariables}, \typeterminal{type-level terminal symbols}, \exprterminal{expression-level terminal symbols}
|
||||
where $\typenames, \typevars, \exprvars$ are mutually disjoint, countable sets of symbols to denote atomic type identifiers (\(\typenames\)), free typevariables (\(\typevars\)), and free expression variables (\(\exprvars\)).
|
||||
where $\typenames, \typevars, \exprvars$ are mutually disjoint, countable sets of symbols to denote atomic type identifiers (\(\typenames\)), typevariables (\(\typevars\)), and expression variables (\(\exprvars\)).
|
||||
By default, assume \(\metavariable{\sigma} \in \typenames\), \(\metavariable{\alpha} \in \typevars\) and \(\metavariable{x} \in \exprvars\)
|
||||
$$\\$$}
|
||||
|
||||
\end{figure}
|
||||
|
@ -228,25 +216,25 @@ Let \(\Sigma = \{ \text{Digit}, \text{Char}, \text{Seq}, \text{UTF-8}, \mathbb{N
|
|||
The following terms are valid types over \(\Sigma\):
|
||||
|
||||
\begin{enumerate}
|
||||
\item \typeterminal{<Seq Char>} \( \in \typenonterm{\emptyset}\)\\
|
||||
\item \typeterminal{<Seq Char>}\\ %\( \in \typenonterm{\emptyset}\)\\
|
||||
"sequence of characters"
|
||||
\item \typeterminal{<Seq <Digit 10> \(\sim\) Char>} \( \in \typenonterm{\emptyset}\)\\
|
||||
\item \typeterminal{<Seq <Digit 10> \(\sim\) Char>}\\ %\( \in \typenonterm{\emptyset}\)\\
|
||||
"sequence of decimal digits, where each digit is represented as character"
|
||||
\item \typeterminal{<Seq Item> \(\rightarrow \mathbb{N} \rightarrow\) Item} \( \in \typenonterm{\{Item\}}\)\\
|
||||
\item \typeterminal{<Seq Item> \(\rightarrow \mathbb{N} \rightarrow\) Item}\\ %\( \in \typenonterm{\{Item\}}\)\\
|
||||
"function that maps a sequence of items and a natural number to an item"\\
|
||||
Note: this type contains the free variable \typeterminal{Item}
|
||||
\item \typeterminal{<Seq Char> \(\sim\) UTF-8 \(\rightarrow \mathbb{N} \rightarrow\) Char } \( \in \typenonterm{\emptyset}\)\\
|
||||
%Note: this type contains the free variable \typeterminal{Item}
|
||||
\item \typeterminal{<Seq Char> \(\sim\) UTF-8 \(\rightarrow \mathbb{N} \rightarrow\) Char }\\ %\( \in \typenonterm{\emptyset}\)\\
|
||||
"function that takes a sequence of chars, represented as UTF-8 string, and a natural number to return a character"
|
||||
\item \typeterminal{\(\forall\) Radix . <Seq <Digit Radix> \(\sim\) Char>} \(\in \typenonterm{\emptyset} \)\\
|
||||
"given the parameter \typeterminal{Radix}, a sequence of digits where each digit is represented as character"\\
|
||||
Note: this type-term is \emph{ground} (i.e. \(\typevars = \emptyset\)), since \typeterminal{Radix} is bound by \(\typeterminal{\forall}\)
|
||||
\item \typeterminal{\(\forall\) Radix . <Seq <Digit Radix> \(\sim\) Char>}\\ %\(\in \typenonterm{\emptyset} \)\\
|
||||
"given the parameter \typeterminal{Radix}, a sequence of digits where each digit is represented as character"
|
||||
%Note: this type-term is \emph{ground} (i.e. \(\typevars = \emptyset\)), since \typeterminal{Radix} is bound by \(\typeterminal{\forall}\)
|
||||
\item \typeterminal{
|
||||
\(\forall\) SrcRadix.\\
|
||||
\(\forall\) DstRadix.\\
|
||||
\(\mathbb{N} \sim\) <PosInt SrcRadix> \(\sim\) <Seq <Digit SrcRadix> \(\sim\) Char>\\
|
||||
\(\rightarrow_{morph}\)\\
|
||||
\(\mathbb{N} \sim\) <PosInt DstRadix> \(\sim\) <Seq <Digit DstRadix> \(\sim\) Char>\\
|
||||
} \(\in \typenonterm{\emptyset} \)\\
|
||||
}\\ %\(\in \typenonterm{\emptyset} \)\\
|
||||
"morphism function that maps the \typeterminal{PosInt} representation of \(\typeterminal{\mathbb{N}}\) with radix \typeterminal{SrcRadix} to the \typeterminal{PosInt} representation of radix \typeterminal{DstRadix}"
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
|
@ -254,8 +242,10 @@ Note: this type-term is \emph{ground} (i.e. \(\typevars = \emptyset\)), since \t
|
|||
|
||||
\begin{definition}[Substitution in Types]
|
||||
Given a type-variable assignment \(\psi_t = \{ \metavariable{\alpha_1} \mapsto \metavariable{\tau_1}, \quad \metavariable{\alpha_2} \mapsto \metavariable{\tau_2}, \quad \dots \}\),
|
||||
the thereby induced, lexically scoped substitution \(\overline{\psi_t}\) replaces all \emph{free} occurences of the variables \(\metavariable{\alpha_i}\) in a type-term \(\metavariable{\xi} \in \typenonterm{\{\metavariable{\alpha_1}, \quad \metavariable{\alpha_2}, \quad \dots\}}\) recursively with the type-term given by \(\psi_t(\metavariable{\alpha_i})\).
|
||||
Lexical scoping is implemented by simply not substituting any bound occourences of variables \(\metavariable{\alpha_i}\). This allows to skip \(\alpha\)-conversion as done in classical \(\lambda\)-calculus.
|
||||
the thereby induced, substitution \(\overline{\psi_t}\) replaces all \emph{free} occurences of the variables \(\metavariable{\alpha_i}\) in a type-term \(\metavariable{\xi} \in \typenonterm{\{\metavariable{\alpha_1}, \quad \metavariable{\alpha_2}, \quad \dots\}}\) recursively with the type-term given by \(\psi_t(\metavariable{\alpha_i})\).
|
||||
Occourences of bound variables \(\metavariable{\alpha_i}\) are
|
||||
|
||||
Coq definition is at \hyperref[coq:subst-type]{subst.v:\ref{coq:subst-type}}.
|
||||
|
||||
\[\overline{\psi_t} \metavariable{\xi} = \begin{cases}
|
||||
\metavariable{\xi} \quad \text{if } \metavariable{\xi} \in \typenames\\
|
||||
|
@ -369,7 +359,7 @@ As usual, each rule is composed of premises (above the horizontal line) and a co
|
|||
|
||||
\inferrule[T-Variable]{
|
||||
\metavariable{x} \in \exprvars\\
|
||||
\metavariable{\tau} \in \typenonterm{\emptyset}\\
|
||||
\metavariable{\tau} \in \nonterm{T}\\
|
||||
\metavariable{x}:\metavariable{\tau} \in \Gamma\\
|
||||
}{
|
||||
\Gamma \vdash \metavariable{x}:\metavariable{\tau}
|
||||
|
@ -385,25 +375,25 @@ As usual, each rule is composed of premises (above the horizontal line) and a co
|
|||
|
||||
|
||||
\inferrule[T-TypeAbs]{
|
||||
\metavariable{\tau} \in \typenonterm{\typevars \cup \{\metavariable{\alpha}\}} \\
|
||||
\metavariable{e} \in \exprnonterm{\typevars \cup \{ \metavariable{\alpha} \}}{\exprvars} \\
|
||||
\metavariable{\tau} \in \nonterm{T} \\
|
||||
\metavariable{e} \in \nonterm{E} \\
|
||||
\Gamma \vdash \metavariable{e} : \metavariable{\tau} \\
|
||||
}{
|
||||
\Gamma \vdash (\exprterminal{\Lambda} \metavariable{\alpha} \exprterminal{\mapsto} \metavariable{e}) : \typeterminal{\forall}\metavariable{\alpha}\typeterminal{.}\metavariable{\tau}
|
||||
}
|
||||
|
||||
\inferrule[T-TypeApp]{
|
||||
\metavariable{\tau} \in \typenonterm{\typevars \cup \{\metavariable{\alpha}\}} \\
|
||||
\metavariable{\tau} \in \nonterm{T} \\
|
||||
\Gamma \vdash \metavariable{e} : \typeterminal{\forall} \metavariable{\alpha} \typeterminal{.} \metavariable{\tau} \\
|
||||
\metavariable{\sigma} \in \typenonterm{\typevars}
|
||||
\metavariable{\sigma} \in \nonterm{T}
|
||||
}{
|
||||
\Gamma \vdash ( \metavariable{e} \quad \metavariable{\sigma} ) : \{\metavariable{\alpha} \mapsto \metavariable{\sigma}\} \metavariable{\tau}
|
||||
}
|
||||
|
||||
|
||||
\inferrule[T-ValueAbs]{
|
||||
\metavariable{\sigma}, \metavariable{\tau} \in \typenonterm{\typevars} \\
|
||||
\metavariable{e} \in \exprnonterm{\typevars}{\exprvars \cup \{ \metavariable{x} \} } \\
|
||||
\metavariable{\sigma}, \metavariable{\tau} \in \nonterm{T} \\
|
||||
\metavariable{e} \in \nonterm{E} \\
|
||||
\Gamma \vdash \metavariable{e} : \metavariable{\tau} \\
|
||||
}{
|
||||
\Gamma \vdash (\exprterminal{\lambda} \metavariable{x} \exprterminal{:} \metavariable{\sigma} \exprterminal{\mapsto} \metavariable{e}) : \metavariable{\sigma}\typeterminal{\rightarrow}\metavariable{\tau}
|
||||
|
@ -424,8 +414,8 @@ As usual, each rule is composed of premises (above the horizontal line) and a co
|
|||
}\and
|
||||
|
||||
\inferrule[T-MorphAbs]{
|
||||
\metavariable{\sigma}, \metavariable{\tau} \in \typenonterm{\typevars} \\
|
||||
\metavariable{e} \in \exprnonterm{\typevars}{\exprvars \cup \{ \metavariable{x} \} } \\
|
||||
\metavariable{\sigma}, \metavariable{\tau} \in \nonterm{T} \\
|
||||
\metavariable{e} \in \nonterm{E} \\
|
||||
\Gamma \vdash \metavariable{e} : \metavariable{\tau} \\
|
||||
}{
|
||||
\Gamma \vdash (\exprterminal{\lambda} \metavariable{x} \exprterminal{:} \metavariable{\tau} \exprterminal{\mapsto_{morph}} \metavariable{e}) : \metavariable{\sigma}\typeterminal{\rightarrow_{morph}}\metavariable{\tau}
|
||||
|
@ -457,7 +447,7 @@ As usual, each rule is composed of premises (above the horizontal line) and a co
|
|||
\end{definition}
|
||||
|
||||
|
||||
\subsection{Evaluation Semantics}
|
||||
\subsection{Evaluation}
|
||||
|
||||
Evaluation of an expression \(\metavariable{e} \in \exprnonterm{\emptyset}{\emptyset}\) is defined by exhaustive application of the rewrite rules \(\rightarrow_\beta\) and \(\rightarrow_\delta\),
|
||||
which are given in \ref{def:evalrules}.
|
||||
|
@ -559,7 +549,7 @@ Then \(\emptyset \vdash \metavariable{e'} : \metavariable{\tau}\)
|
|||
|
||||
\end{lemma}
|
||||
|
||||
\subsection{Proof of Syntactic Type Soundness}
|
||||
\subsection{Soundness}
|
||||
|
||||
\begin{lemma}[\(\beta\)-Preservation]
|
||||
\label{lemma:beta-preservation}
|
||||
|
|
Loading…
Reference in a new issue