improve type-opening lemmas
This commit is contained in:
parent
f8effc45ad
commit
4b76d6a982
1 changed files with 26 additions and 86 deletions
|
@ -52,21 +52,18 @@ Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Lemma open_rec_lc_core : forall τ i σ1 j σ2,
|
Lemma type_open_lc_core : forall τ i σ1 j σ2,
|
||||||
i <> j ->
|
i <> j ->
|
||||||
{i ~> σ1} τ = {j ~> σ2} ({i ~> σ1} τ) ->
|
{i ~> σ1} τ = {j ~> σ2} ({i ~> σ1} τ) ->
|
||||||
({j ~> σ2} τ) = τ.
|
({j ~> σ2} τ) = τ
|
||||||
|
.
|
||||||
Proof with eauto*.
|
Proof with eauto*.
|
||||||
induction τ;
|
induction τ;
|
||||||
intros i σ1 j σ2 Neq H.
|
intros i σ1 j σ2 Neq H;
|
||||||
|
simpl in *;
|
||||||
|
inversion H;
|
||||||
|
f_equal; eauto.
|
||||||
|
|
||||||
(* id *)
|
|
||||||
- reflexivity.
|
|
||||||
|
|
||||||
(* free var *)
|
|
||||||
- reflexivity.
|
|
||||||
|
|
||||||
(* bound var *)
|
(* bound var *)
|
||||||
- simpl in *.
|
- simpl in *.
|
||||||
destruct (j === n).
|
destruct (j === n).
|
||||||
|
@ -83,97 +80,40 @@ Proof with eauto*.
|
||||||
reflexivity.
|
reflexivity.
|
||||||
contradict n1.
|
contradict n1.
|
||||||
reflexivity.
|
reflexivity.
|
||||||
|
|
||||||
(* univ *)
|
|
||||||
- simpl in *.
|
|
||||||
inversion H.
|
|
||||||
f_equal.
|
|
||||||
apply IHτ with (i:=S i) (j:=S j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H1.
|
|
||||||
|
|
||||||
(* spec *)
|
|
||||||
- simpl in *.
|
|
||||||
inversion H.
|
|
||||||
f_equal.
|
|
||||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H1.
|
|
||||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H2.
|
|
||||||
|
|
||||||
(* func *)
|
|
||||||
- simpl in *.
|
|
||||||
inversion H.
|
|
||||||
f_equal.
|
|
||||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H1.
|
|
||||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H2.
|
|
||||||
|
|
||||||
|
|
||||||
(* morph *)
|
|
||||||
- simpl in *.
|
|
||||||
inversion H.
|
|
||||||
f_equal.
|
|
||||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H1.
|
|
||||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H2.
|
|
||||||
|
|
||||||
(* ladder *)
|
|
||||||
- simpl in *.
|
|
||||||
inversion H.
|
|
||||||
f_equal.
|
|
||||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H1.
|
|
||||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
|
||||||
auto.
|
|
||||||
apply H2.
|
|
||||||
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma type_open_rec_lc : forall k σ τ,
|
(*
|
||||||
|
* opening is idempotent on locally closed types
|
||||||
|
*)
|
||||||
|
Lemma type_open_lc : forall k σ τ,
|
||||||
type_lc τ ->
|
type_lc τ ->
|
||||||
({ k ~> σ } τ) = τ
|
({ k ~> σ } τ) = τ
|
||||||
.
|
.
|
||||||
Proof.
|
Proof.
|
||||||
intros.
|
intros.
|
||||||
generalize dependent k.
|
generalize dependent k.
|
||||||
induction H.
|
induction H; eauto; simpl in *; intro k.
|
||||||
|
|
||||||
(* id *)
|
|
||||||
- auto.
|
|
||||||
|
|
||||||
(* free var *)
|
|
||||||
- auto.
|
|
||||||
|
|
||||||
(* univ *)
|
(* univ *)
|
||||||
- simpl.
|
f_equal.
|
||||||
intro k.
|
unfold type_open in *.
|
||||||
f_equal.
|
pick fresh x for L.
|
||||||
unfold type_open in *.
|
apply type_open_lc_core with
|
||||||
pick fresh x for L.
|
|
||||||
apply open_rec_lc_core with
|
|
||||||
(i := 0) (σ1 := (ty_fvar x))
|
(i := 0) (σ1 := (ty_fvar x))
|
||||||
(j := S k) (σ2 := σ).
|
(j := S k) (σ2 := σ).
|
||||||
trivial.
|
trivial.
|
||||||
apply eq_sym, H0, Fr.
|
apply eq_sym, H0, Fr.
|
||||||
|
|
||||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
(* rest *)
|
||||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
all: rewrite IHtype_lc1; rewrite IHtype_lc2; reflexivity.
|
||||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
|
||||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma type_subst_open_rec : forall τ σ1 σ2 x k,
|
|
||||||
|
(*
|
||||||
|
* type substitution distributes over opening
|
||||||
|
*)
|
||||||
|
Lemma type_subst_open : forall τ σ1 σ2 x k,
|
||||||
type_lc σ2 ->
|
type_lc σ2 ->
|
||||||
|
|
||||||
[x ~> σ2] ({k ~> σ1} τ)
|
[x ~> σ2] ({k ~> σ1} τ)
|
||||||
|
@ -186,7 +126,7 @@ Proof.
|
||||||
(* free var *)
|
(* free var *)
|
||||||
- destruct (x == a).
|
- destruct (x == a).
|
||||||
subst.
|
subst.
|
||||||
apply eq_sym, type_open_rec_lc.
|
apply eq_sym, type_open_lc.
|
||||||
assumption.
|
assumption.
|
||||||
trivial.
|
trivial.
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue