improve type-opening lemmas
This commit is contained in:
parent
f8effc45ad
commit
4b76d6a982
1 changed files with 26 additions and 86 deletions
|
@ -52,20 +52,17 @@ Qed.
|
|||
|
||||
|
||||
|
||||
Lemma open_rec_lc_core : forall τ i σ1 j σ2,
|
||||
Lemma type_open_lc_core : forall τ i σ1 j σ2,
|
||||
i <> j ->
|
||||
{i ~> σ1} τ = {j ~> σ2} ({i ~> σ1} τ) ->
|
||||
({j ~> σ2} τ) = τ.
|
||||
|
||||
({j ~> σ2} τ) = τ
|
||||
.
|
||||
Proof with eauto*.
|
||||
induction τ;
|
||||
intros i σ1 j σ2 Neq H.
|
||||
|
||||
(* id *)
|
||||
- reflexivity.
|
||||
|
||||
(* free var *)
|
||||
- reflexivity.
|
||||
intros i σ1 j σ2 Neq H;
|
||||
simpl in *;
|
||||
inversion H;
|
||||
f_equal; eauto.
|
||||
|
||||
(* bound var *)
|
||||
- simpl in *.
|
||||
|
@ -83,97 +80,40 @@ Proof with eauto*.
|
|||
reflexivity.
|
||||
contradict n1.
|
||||
reflexivity.
|
||||
|
||||
(* univ *)
|
||||
- simpl in *.
|
||||
inversion H.
|
||||
f_equal.
|
||||
apply IHτ with (i:=S i) (j:=S j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H1.
|
||||
|
||||
(* spec *)
|
||||
- simpl in *.
|
||||
inversion H.
|
||||
f_equal.
|
||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H1.
|
||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H2.
|
||||
|
||||
(* func *)
|
||||
- simpl in *.
|
||||
inversion H.
|
||||
f_equal.
|
||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H1.
|
||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H2.
|
||||
|
||||
|
||||
(* morph *)
|
||||
- simpl in *.
|
||||
inversion H.
|
||||
f_equal.
|
||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H1.
|
||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H2.
|
||||
|
||||
(* ladder *)
|
||||
- simpl in *.
|
||||
inversion H.
|
||||
f_equal.
|
||||
* apply IHτ1 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H1.
|
||||
* apply IHτ2 with (i:=i) (j:=j) (σ1:=σ1).
|
||||
auto.
|
||||
apply H2.
|
||||
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma type_open_rec_lc : forall k σ τ,
|
||||
(*
|
||||
* opening is idempotent on locally closed types
|
||||
*)
|
||||
Lemma type_open_lc : forall k σ τ,
|
||||
type_lc τ ->
|
||||
({ k ~> σ } τ) = τ
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
generalize dependent k.
|
||||
induction H.
|
||||
|
||||
(* id *)
|
||||
- auto.
|
||||
|
||||
(* free var *)
|
||||
- auto.
|
||||
induction H; eauto; simpl in *; intro k.
|
||||
|
||||
(* univ *)
|
||||
- simpl.
|
||||
intro k.
|
||||
f_equal.
|
||||
unfold type_open in *.
|
||||
pick fresh x for L.
|
||||
apply open_rec_lc_core with
|
||||
apply type_open_lc_core with
|
||||
(i := 0) (σ1 := (ty_fvar x))
|
||||
(j := S k) (σ2 := σ).
|
||||
trivial.
|
||||
apply eq_sym, H0, Fr.
|
||||
|
||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
||||
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
|
||||
(* rest *)
|
||||
all: rewrite IHtype_lc1; rewrite IHtype_lc2; reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma type_subst_open_rec : forall τ σ1 σ2 x k,
|
||||
|
||||
(*
|
||||
* type substitution distributes over opening
|
||||
*)
|
||||
Lemma type_subst_open : forall τ σ1 σ2 x k,
|
||||
type_lc σ2 ->
|
||||
|
||||
[x ~> σ2] ({k ~> σ1} τ)
|
||||
|
@ -186,7 +126,7 @@ Proof.
|
|||
(* free var *)
|
||||
- destruct (x == a).
|
||||
subst.
|
||||
apply eq_sym, type_open_rec_lc.
|
||||
apply eq_sym, type_open_lc.
|
||||
assumption.
|
||||
trivial.
|
||||
|
||||
|
|
Loading…
Reference in a new issue