coq: add preliminary preservation proof

This commit is contained in:
Michael Sippel 2024-09-24 12:08:16 +02:00
parent d31101103f
commit 54b9d4c06d
Signed by: senvas
GPG key ID: F96CF119C34B64A6

View file

@ -0,0 +1,246 @@
From Coq Require Import Lists.List.
Require Import Atom.
Require Import Environment.
Require Import Metatheory.
Require Import debruijn.
Require Import subtype.
Require Import env.
Require Import morph.
Require Import subst_lemmas.
Require Import typing.
Require Import eval.
Require Import typing_weakening.
Require Import typing_inv.
Require Import translate_morph.
Require Import translate_expr.
Require Import transl_inv.
Lemma typing_subst : forall Γ e τ z σ u,
(((z,σ)::Γ) |- e \is τ) ->
(Γ |- u \is σ) ->
(Γ |- ([z ~ee~> u] e) \is τ)
.
Proof.
intros E e u S T z H J.
rewrite <- (nil_concat _ E).
Admitted.
(*
eapply typing_subst_strengthened.
rewrite nil_concat. apply H.
apply J.
Qed.
*)
Lemma subst_intro : forall (x : atom) u e,
x `notin` (expr_fv e) ->
expr_lc u ->
expr_open u e = [x ~ee~> u](expr_open (ex_fvar x) e).
Proof.
intros x u e H J.
unfold expr_open.
(*
rewrite subst_open_rec; auto.
simpl.
destruct (x == x).
Case "x = x".
rewrite subst_fresh; auto.
Case "x <> x".
destruct n; auto.
Qed.
*)
Admitted.
Lemma typing_subst_type : forall Γ x σ e τ,
(Γ |- e \is τ) ->
(Γ |- ([x ~et~> σ] e) \is τ)
.
Proof.
Admitted.
Lemma subst_intro_type : forall (x : atom) τ e,
x `notin` (expr_fv_type e) ->
type_lc τ ->
expr_open_type τ e = [x ~et~> τ](expr_open_type (ty_fvar x) e).
Proof.
intros x u e H J.
unfold expr_open.
Admitted.
Lemma preservation : forall Γ e e' e'' τ,
(Γ |- e \is τ) ->
(Γ |- [[ e \is τ ]] = e') ->
(e' -->eval e'') ->
(Γ |- e'' \is τ)
.
Proof with simpl_env.
intros E e e' e'' τ Typing Transl Eval.
induction Transl.
(* Var *)
- inversion Eval.
(* Let *)
- inversion Eval.
pick fresh y.
rewrite (subst_intro y); subst.
2: fsetdec.
2: inversion H5; assumption.
apply typing_subst with (σ:=σ).
apply transl_preservation with (e:=(expr_open [{ $y }] t)).
apply typing_inv_let with (L:=L) (s:=e) (t:=t).
1-2:assumption.
fsetdec.
apply transl_inv_let with (L:=L) (s:=e) (s':=e').
assumption.
2:fsetdec.
2:apply transl_preservation with (e:=e).
2-3:assumption.
apply Expand_Let with (L:=L) (σ:=σ).
assumption.
assumption.
assumption.
(* Type-Abs *)
- admit.
(*
inversion Eval; subst.
pick fresh y.
apply typing_inv_tabs.
apply T_TypeAbs with (L:=L).
intros x Fr.
rewrite (subst_intro_type x); subst.
apply typing_subst_type.
*)
(* Type-App *)
- inversion Eval; subst.
pick fresh y.
admit.
(* func *)
- inversion Eval.
(* morph *)
- inversion Eval.
(* app *)
- inversion Eval; subst.
(* f is reduced *)
* apply T_App with (σ':=σ) (σ:=σ).
3: apply id_morphism_path.
apply IHTransl1.
assumption.
inversion Transl1; subst; auto.
apply T_App with (σ':=σ') (σ:=σ') (τ:=σ).
3: apply id_morphism_path.
apply T_MorphFun.
apply morphism_path_correct with (τ:=σ') (τ':=σ).
admit. (* σ' is lc *)
admit. (* σ is lc *)
admit. (* Γ is wf *)
assumption.
apply transl_preservation with (e:=a).
assumption.
assumption.
(* f is value *)
* apply T_App with (σ':=σ) (σ:=σ) (τ:=τ).
3: apply id_morphism_path.
-- apply transl_preservation with (e:=f).
all:assumption.
-- apply transl_preservation with (e:=[{m a'}]).
apply T_App with (σ':=σ') (σ:=σ') (τ:=σ).
3: apply id_morphism_path.
apply T_MorphFun.
apply morphism_path_correct.
admit. (* σ' is lc *)
admit. (* σ is lc *)
admit. (* Γ is wf *)
assumption.
apply transl_preservation with (e:=a).
assumption.
assumption.
admit.
(* f is lambda *)
*
* inversion Eval; subst.
apply T_App with (σ':=σ) (σ:=σ).
auto.
apply T_App with (σ':=σ') (σ:=σ').
apply T_MorphFun.
apply morphism_path_correct.
admit. (* σ' is lc *)
admit. (* σ is lc *)
admit. (* Γ is wf *)
assumption.
apply transl_preservation with (e:=a).
assumption.
assumption.
apply id_morphism_path.
apply id_morphism_path.
apply T_App with (σ':=σ) (σ:=σ).
3: apply id_morphism_path.
(* morph-app *)
- apply T_MorphFun.
apply IHTransl.
assumption.
assumption.
(* ascension *)
- apply transl_preservation with (e:=[{e' as τ'}]).
apply T_Ascend.
apply transl_preservation with (e:=e).
assumption.
assumption.
admit.
(*
apply Expand_Ascend with (Γ:=Γ) (e:=e) (τ':=τ') (τ:=τ) (e':=e').
*)
- apply transl_preservation with (e:=[{e' des τ'}]).
apply T_Descend with (τ:=τ).
apply transl_preservation with (e:=e).
assumption.
assumption.
assumption.
apply Expand_
admit.
(* descension *)
- inversion Eval; subst.
* apply T_DescendImplicit with (τ:=τ).
apply transl_preservation with (e:=e).
all: assumption.
* inversion Eval; subst.
apply transl_preservation with (e:=e).
assumption.
apply Expand_Descend with (τ:=τ).
assumption.
assumption.
assumption.
apply T_DescendImplicit with (τ:=τ').
2: assumption.
inversion Transl; subst.
admit.
apply transl_preservation with (e:=e0).
Admitted.