coq: add 'compatible' typing relation
This commit is contained in:
parent
361d03c117
commit
61f1234fcc
1 changed files with 113 additions and 11 deletions
122
coq/typing.v
122
coq/typing.v
|
@ -4,11 +4,18 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
Include Equiv.
|
||||
Include Subtype.
|
||||
|
||||
Module Typing.
|
||||
|
||||
(** Typing Derivation *)
|
||||
|
||||
Inductive context : Type :=
|
||||
| ctx_assign : string -> type_term -> context -> context
|
||||
| ctx_empty : context
|
||||
|
@ -52,22 +59,68 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
Γ |- a \is σ ->
|
||||
Γ |- (expr_tm_app f a) \is τ
|
||||
|
||||
| T_Sub : forall Γ x τ τ',
|
||||
Γ |- x \is τ ->
|
||||
(τ :<= τ') ->
|
||||
Γ |- x \is τ'
|
||||
|
||||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
|
||||
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
|
||||
| T_CompatVar : forall Γ x τ,
|
||||
(context_contains Γ x τ) ->
|
||||
(Γ |- (expr_var x) \compatible τ)
|
||||
|
||||
| T_Compatible : forall Γ x τ,
|
||||
(Γ |- x \is τ) ->
|
||||
(Γ |- x \compatible τ)
|
||||
| T_CompatLet : forall Γ s (σ:type_term) t τ x,
|
||||
(Γ |- s \compatible σ) ->
|
||||
(Γ |- t \compatible τ) ->
|
||||
(Γ |- (expr_let x σ s t) \compatible τ)
|
||||
|
||||
| T_CompatTypeAbs : forall Γ (e:expr_term) (τ:type_term) α,
|
||||
Γ |- e \compatible τ ->
|
||||
Γ |- (expr_ty_abs α e) \compatible (type_univ α τ)
|
||||
|
||||
| T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
|
||||
Γ |- e \compatible (type_univ α τ) ->
|
||||
Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ)
|
||||
|
||||
| T_CompatMorphAbs : forall Γ x t τ τ',
|
||||
Γ |- t \compatible τ ->
|
||||
(τ ~<= τ') ->
|
||||
Γ |- (expr_tm_abs_morph x τ t) \compatible (type_morph τ τ')
|
||||
|
||||
| T_CompatAbs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term),
|
||||
(context_contains Γ x σ) ->
|
||||
Γ |- t \compatible τ ->
|
||||
Γ |- (expr_tm_abs x σ t) \compatible (type_fun σ τ)
|
||||
|
||||
| T_CompatApp : forall Γ f a σ τ,
|
||||
(Γ |- f \compatible (type_fun σ τ)) ->
|
||||
(Γ |- a \compatible σ) ->
|
||||
(Γ |- (expr_tm_app f a) \compatible τ)
|
||||
|
||||
| T_CompatImplicitCast : forall Γ h x τ τ',
|
||||
(context_contains Γ h (type_morph τ τ')) ->
|
||||
(Γ |- x \compatible τ) ->
|
||||
(Γ |- x \compatible τ')
|
||||
|
||||
| T_CompatSub : forall Γ x τ τ',
|
||||
(Γ |- x \compatible τ) ->
|
||||
(τ ~<= τ') ->
|
||||
(Γ |- x \compatible τ')
|
||||
|
||||
where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ).
|
||||
|
||||
|
||||
(* Examples *)
|
||||
|
||||
|
||||
Example typing1 :
|
||||
forall Γ,
|
||||
(context_contains Γ "x" (type_var "T")) ->
|
||||
Γ |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
|
||||
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% ]] \is [ ∀"T", %"T"% -> %"T"% ].
|
||||
(* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *)
|
||||
Proof.
|
||||
intros.
|
||||
apply T_TypeAbs.
|
||||
|
@ -75,15 +128,64 @@ Proof.
|
|||
apply H.
|
||||
apply T_Var.
|
||||
apply H.
|
||||
Admitted.
|
||||
Qed.
|
||||
|
||||
Example typing2 :
|
||||
ctx_empty |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
|
||||
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
|
||||
forall Γ,
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% ]] \is [ ∀"U", %"U"% -> %"U"% ].
|
||||
(* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *)
|
||||
Proof.
|
||||
intros.
|
||||
apply T_Sub with (τ:=[∀"T",(%"T"% -> %"T"%)]).
|
||||
apply T_TypeAbs.
|
||||
apply T_Abs.
|
||||
apply H.
|
||||
apply T_Var.
|
||||
apply H.
|
||||
|
||||
Admitted.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_VarReplace.
|
||||
Qed.
|
||||
|
||||
Example typing3 :
|
||||
forall Γ,
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
(context_contains Γ "y" [ %"U"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"y"% ]] \is [ ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) ].
|
||||
Proof.
|
||||
intros.
|
||||
apply T_Sub with (τ:=[∀"T",∀"U",(%"T"%->%"U"%->%"U"%)]) (τ':=[∀"S",∀"T",(%"S"%->%"T"%->%"T"%)]).
|
||||
apply T_TypeAbs, T_TypeAbs, T_Abs.
|
||||
apply H.
|
||||
apply T_Abs.
|
||||
apply H0.
|
||||
apply T_Var, H0.
|
||||
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Trans with (y:= [∀"S",∀"U",(%"S"%->%"U"%->%"U"%)] ).
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_UnivReplace. discriminate.
|
||||
easy.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_SubUniv.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_VarReplace.
|
||||
Qed.
|
||||
|
||||
End Typing.
|
||||
|
|
Loading…
Reference in a new issue