add #[export] to all Hints
This commit is contained in:
parent
63b121a815
commit
666d14e91d
6 changed files with 19 additions and 19 deletions
|
@ -269,7 +269,7 @@ Proof.
|
||||||
simpl. intros. fsetdec.
|
simpl. intros. fsetdec.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Hint Rewrite
|
#[export] Hint Rewrite
|
||||||
cons_concat map_singleton_list dom_singleton_list
|
cons_concat map_singleton_list dom_singleton_list
|
||||||
concat_nil nil_concat concat_assoc
|
concat_nil nil_concat concat_assoc
|
||||||
map_nil map_single map_push map_concat
|
map_nil map_single map_push map_concat
|
||||||
|
@ -329,7 +329,7 @@ Tactic Notation "rewrite_env" constr(E) "in" hyp(H) :=
|
||||||
|
|
||||||
(** ** Hints *)
|
(** ** Hints *)
|
||||||
|
|
||||||
Hint Constructors ok.
|
#[export] Hint Constructors ok.
|
||||||
|
|
||||||
Local Hint Extern 1 (~ In _ _) => simpl_env in *; fsetdec.
|
Local Hint Extern 1 (~ In _ _) => simpl_env in *; fsetdec.
|
||||||
|
|
||||||
|
@ -498,9 +498,9 @@ End BindsProperties.
|
||||||
|
|
||||||
(** ** Hints *)
|
(** ** Hints *)
|
||||||
|
|
||||||
Hint Immediate ok_remove_mid ok_remove_mid_cons.
|
#[export] Hint Immediate ok_remove_mid ok_remove_mid_cons.
|
||||||
|
|
||||||
Hint Resolve
|
#[export] Hint Resolve
|
||||||
ok_push ok_singleton ok_map ok_map_app_l
|
ok_push ok_singleton ok_map ok_map_app_l
|
||||||
binds_singleton binds_head binds_tail.
|
binds_singleton binds_head binds_tail.
|
||||||
|
|
||||||
|
@ -655,6 +655,6 @@ End AdditionalBindsProperties.
|
||||||
(* *********************************************************************** *)
|
(* *********************************************************************** *)
|
||||||
(** * #<a name="auto3"></a># Automation and tactics (III) *)
|
(** * #<a name="auto3"></a># Automation and tactics (III) *)
|
||||||
|
|
||||||
Hint Resolve binds_map binds_concat_ok binds_weaken binds_weaken_at_head.
|
#[export] Hint Resolve binds_map binds_concat_ok binds_weaken binds_weaken_at_head.
|
||||||
|
|
||||||
Hint Immediate binds_remove_mid binds_remove_mid_cons.
|
#[export] Hint Immediate binds_remove_mid binds_remove_mid_cons.
|
||||||
|
|
|
@ -94,7 +94,7 @@ Tactic Notation
|
||||||
particular those arising from cofinite quantification. *)
|
particular those arising from cofinite quantification. *)
|
||||||
|
|
||||||
Create HintDb MetatheoryHints.
|
Create HintDb MetatheoryHints.
|
||||||
Hint Resolve notin_empty notin_singleton notin_union :MetatheoryHints.
|
#[export] Hint Resolve notin_empty notin_singleton notin_union :MetatheoryHints.
|
||||||
(*Hint Extern 4 (_ `notin` _) => simpl_env; notin_solve :MetatheoryHints.
|
(*Hint Extern 4 (_ `notin` _) => simpl_env; notin_solve :MetatheoryHints.
|
||||||
Hint Extern 4 (_ <> _ :> atom) => simpl_env; notin_solve :MetatheoryHints.
|
#[export] Hint Extern 4 (_ <> _ :> atom) => simpl_env; notin_solve :MetatheoryHints.
|
||||||
*)
|
*)
|
|
@ -40,7 +40,7 @@ Inductive type_distribute_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
|
|
||||||
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
||||||
|
|
||||||
Hint Constructors type_distribute_ladder : type_eq_hints.
|
#[export] Hint Constructors type_distribute_ladder : type_eq_hints.
|
||||||
|
|
||||||
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
||||||
Inductive type_condense_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
|
Inductive type_condense_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
|
@ -76,7 +76,7 @@ Inductive type_condense_ladder : type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
|
|
||||||
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
||||||
|
|
||||||
Hint Constructors type_condense_ladder : type_eq_hints.
|
#[export] Hint Constructors type_condense_ladder : type_eq_hints.
|
||||||
|
|
||||||
(** Inversion Lemma:
|
(** Inversion Lemma:
|
||||||
`-->distribute-ladder` is the inverse of `-->condense-ladder
|
`-->distribute-ladder` is the inverse of `-->condense-ladder
|
||||||
|
@ -104,8 +104,8 @@ Proof.
|
||||||
all: auto with type_eq_hints.
|
all: auto with type_eq_hints.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Hint Resolve condense_inverse :type_eq_hints.
|
#[export] Hint Resolve condense_inverse :type_eq_hints.
|
||||||
Hint Resolve distribute_inverse :type_eq_hints.
|
#[export] Hint Resolve distribute_inverse :type_eq_hints.
|
||||||
|
|
||||||
(** Define the equivalence relation as reflexive, transitive hull. $\label{coq:type-equiv}$ *)
|
(** Define the equivalence relation as reflexive, transitive hull. $\label{coq:type-equiv}$ *)
|
||||||
|
|
||||||
|
@ -149,7 +149,7 @@ Inductive type_eq : type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
|
|
||||||
where "S '===' T" := (type_eq S T).
|
where "S '===' T" := (type_eq S T).
|
||||||
|
|
||||||
Hint Constructors type_eq : type_eq_hints.
|
#[export] Hint Constructors type_eq : type_eq_hints.
|
||||||
|
|
||||||
(** Symmetry of === *)
|
(** Symmetry of === *)
|
||||||
Lemma TEq_Symm :
|
Lemma TEq_Symm :
|
||||||
|
|
|
@ -40,7 +40,7 @@ Inductive morphism_path : env -> type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
where "Γ '|-' s '~~>' t" := (morphism_path Γ s t).
|
where "Γ '|-' s '~~>' t" := (morphism_path Γ s t).
|
||||||
|
|
||||||
Create HintDb morph_path_hints.
|
Create HintDb morph_path_hints.
|
||||||
Hint Constructors morphism_path :morph_path_hints.
|
#[export] Hint Constructors morphism_path :morph_path_hints.
|
||||||
|
|
||||||
Lemma id_morphism_path : forall Γ τ,
|
Lemma id_morphism_path : forall Γ τ,
|
||||||
type_lc τ ->
|
type_lc τ ->
|
||||||
|
|
|
@ -35,9 +35,9 @@ Inductive is_conv_subtype : type_DeBruijn -> type_DeBruijn -> Prop :=
|
||||||
| TSubConv_Morph : forall x y y', [< x ~ y >] ~<= [< x ~ y' >]
|
| TSubConv_Morph : forall x y y', [< x ~ y >] ~<= [< x ~ y' >]
|
||||||
where "s '~<=' t" := (is_conv_subtype s t).
|
where "s '~<=' t" := (is_conv_subtype s t).
|
||||||
|
|
||||||
Hint Constructors is_repr_subtype :subtype_hints.
|
#[export] Hint Constructors is_repr_subtype :subtype_hints.
|
||||||
Hint Constructors is_conv_subtype :subtype_hints.
|
#[export] Hint Constructors is_conv_subtype :subtype_hints.
|
||||||
Hint Constructors type_eq :subtype_hints.
|
#[export] Hint Constructors type_eq :subtype_hints.
|
||||||
|
|
||||||
(* Every Representational Subtype is a Convertible Subtype *)
|
(* Every Representational Subtype is a Convertible Subtype *)
|
||||||
|
|
||||||
|
|
|
@ -70,7 +70,7 @@ where "Γ '|-' x '\is' τ" := (typing Γ x τ).
|
||||||
|
|
||||||
|
|
||||||
Create HintDb typing_hints.
|
Create HintDb typing_hints.
|
||||||
Hint Constructors typing :typing_hints.
|
#[export] Hint Constructors typing :typing_hints.
|
||||||
|
|
||||||
|
|
||||||
Reserved Notation "Γ '|-' '[[' e \is τ ']]' '=' f" (at level 101).
|
Reserved Notation "Γ '|-' '[[' e \is τ ']]' '=' f" (at level 101).
|
||||||
|
|
Loading…
Reference in a new issue