work on typing rules

This commit is contained in:
Michael Sippel 2024-09-04 12:39:15 +02:00
parent b978637b57
commit 75fab989d7
Signed by: senvas
GPG key ID: F96CF119C34B64A6

View file

@ -59,7 +59,21 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
Γ |- a \is σ -> Γ |- a \is σ ->
Γ |- (expr_app f a) \is τ Γ |- (expr_app f a) \is τ
| T_Sub : forall Γ x τ τ', | T_MorphAbs : forall Γ x σ e τ,
(context_contains Γ x σ) ->
Γ |- e \is τ ->
Γ |- (expr_morph x σ e) \is (type_morph σ τ)
| T_MorphFun : forall Γ f σ τ,
Γ |- f \is (type_morph σ τ) ->
Γ |- f \is (type_fun σ τ)
| T_Ascend : forall Γ e τ τ',
(Γ |- e \is τ) ->
(τ' :<= τ) ->
(Γ |- (expr_ascend τ' e) \is τ')
| T_Descend : forall Γ x τ τ',
Γ |- x \is τ -> Γ |- x \is τ ->
(τ :<= τ') -> (τ :<= τ') ->
Γ |- x \is τ' Γ |- x \is τ'
@ -68,44 +82,31 @@ where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop := Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
| T_CompatVar : forall Γ x τ, | TCompat_Native : forall Γ e τ,
(context_contains Γ x τ) -> (Γ |- e \is τ) ->
(Γ |- (expr_var x) \compatible τ) (Γ |- e \compatible τ)
| T_CompatLet : forall Γ s (σ:type_term) t τ x, | TCompat_Let : forall Γ s (σ:type_term) t τ x,
(Γ |- s \compatible σ) -> (Γ |- s \is σ) ->
(context_contains Γ x σ) ->
(Γ |- t \compatible τ) -> (Γ |- t \compatible τ) ->
(Γ |- (expr_let x σ s t) \compatible τ) (Γ |- (expr_let x σ s t) \compatible τ)
| T_CompatTypeAbs : forall Γ (e:expr_term) (τ:type_term) α,
Γ |- e \compatible τ ->
Γ |- (expr_ty_abs α e) \compatible (type_univ α τ)
| T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term), | T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
Γ |- e \compatible (type_univ α τ) -> Γ |- e \compatible (type_univ α τ) ->
Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ) Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ)
| T_CompatMorphAbs : forall Γ x t τ τ', | TCompat_App : forall Γ f a σ τ,
Γ |- t \compatible τ ->
(τ ~<= τ') ->
Γ |- (expr_morph x τ t) \compatible (type_morph τ τ')
| T_CompatAbs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term),
(context_contains Γ x σ) ->
Γ |- t \compatible τ ->
Γ |- (expr_abs x σ t) \compatible (type_fun σ τ)
| T_CompatApp : forall Γ f a σ τ,
(Γ |- f \compatible (type_fun σ τ)) -> (Γ |- f \compatible (type_fun σ τ)) ->
(Γ |- a \compatible σ) -> (Γ |- a \compatible σ) ->
(Γ |- (expr_app f a) \compatible τ) (Γ |- (expr_app f a) \compatible τ)
| T_CompatImplicitCast : forall Γ h x τ τ', | TCompat_Morph : forall Γ h x τ τ',
(context_contains Γ h (type_morph τ τ')) -> (context_contains Γ h (type_morph τ τ')) ->
(Γ |- x \compatible τ) -> (Γ |- x \compatible τ) ->
(Γ |- x \compatible τ') (Γ |- x \compatible τ')
| T_CompatSub : forall Γ x τ τ', | TCompat_Sub : forall Γ x τ τ',
(Γ |- x \compatible τ) -> (Γ |- x \compatible τ) ->
(τ ~<= τ') -> (τ ~<= τ') ->
(Γ |- x \compatible τ') (Γ |- x \compatible τ')
@ -117,6 +118,11 @@ Definition is_well_typed (e:expr_term) : Prop :=
Γ |- e \compatible τ Γ |- e \compatible τ
. .
Definition is_exactly_typed (e:expr_term) : Prop :=
exists Γ τ,
Γ |- e \is τ
.
(* Examples *) (* Examples *)
Example typing1 : Example typing1 :
@ -139,7 +145,7 @@ Example typing2 :
Γ |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "U", %"U"% -> %"U"% >]. Γ |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "U", %"U"% -> %"U"% >].
Proof. Proof.
intros. intros.
apply T_Sub with (τ:=[< "T",(%"T"% -> %"T"%) >]). apply T_Descend with (τ:=[< "T",(%"T"% -> %"T"%) >]).
apply T_TypeAbs. apply T_TypeAbs.
apply T_Abs. apply T_Abs.
apply H. apply H.
@ -165,7 +171,7 @@ Example typing3 :
>]. >].
Proof. Proof.
intros. intros.
apply T_Sub with (τ:=[< "T","U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< "S","T",(%"S"%->%"T"%->%"T"%) >]). apply T_Descend with (τ:=[< "T","U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< "S","T",(%"S"%->%"T"%->%"T"%) >]).
apply T_TypeAbs, T_TypeAbs, T_Abs. apply T_TypeAbs, T_TypeAbs, T_Abs.
apply H. apply H.
apply T_Abs. apply T_Abs.
@ -203,13 +209,14 @@ Proof.
exists (ctx_assign "x" [< %"T"% >] exists (ctx_assign "x" [< %"T"% >]
(ctx_assign "y" [< %"U"% >] ctx_empty)). (ctx_assign "y" [< %"U"% >] ctx_empty)).
exists [< "T","U",%"T"%->%"U"%->%"T"% >]. exists [< "T","U",%"T"%->%"U"%->%"T"% >].
apply T_CompatTypeAbs. apply TCompat_Native.
apply T_CompatTypeAbs. apply T_TypeAbs.
apply T_CompatAbs. apply T_TypeAbs.
apply T_Abs.
apply C_take. apply C_take.
apply T_CompatAbs. apply T_Abs.
apply C_shuffle. apply C_take. apply C_shuffle. apply C_take.
apply T_CompatVar. apply T_Var.
apply C_take. apply C_take.
Qed. Qed.