coq: add some examples of bb-encoding
This commit is contained in:
parent
04f9393b4f
commit
84ad8d9897
1 changed files with 74 additions and 0 deletions
74
coq/bbencode.v
Normal file
74
coq/bbencode.v
Normal file
|
@ -0,0 +1,74 @@
|
|||
|
||||
|
||||
(* let bb_zero = Λα ↦ λs: α->α ↦ λz: α ↦ z
|
||||
* ∀α.(α->α)->α->α
|
||||
*)
|
||||
Definition bb_zero : expr :=
|
||||
(expr_ty_abs "α"
|
||||
(expr_tm_abs "s" (type_fun (type_var "α") (type_var "α"))
|
||||
(expr_tm_abs "z" (type_var "α")
|
||||
(expr_var "z")))).
|
||||
|
||||
(* let bb_one = Λα ↦ λs: α->α ↦ λz: α ↦ s z
|
||||
*)
|
||||
Definition bb_one : expr :=
|
||||
(expr_ty_abs "α"
|
||||
(expr_tm_abs "s" (type_fun (type_var "α") (type_var "α"))
|
||||
(expr_tm_abs "z" (type_var "α")
|
||||
(expr_tm_app (expr_var "s") (expr_var "z"))))).
|
||||
|
||||
(* let bb_two = Λα ↦ λs: α->α ↦ λz: α ↦ s (s z)
|
||||
*)
|
||||
Definition bb_two : expr :=
|
||||
(expr_ty_abs "α"
|
||||
(expr_tm_abs "s" (type_fun (type_var "α") (type_var "α"))
|
||||
(expr_tm_abs "z" (type_var "α")
|
||||
(expr_tm_app (expr_var "s") (expr_tm_app (expr_var "s") (expr_var "z")))))).
|
||||
|
||||
|
||||
Definition bb_succ : expr :=
|
||||
(expr_tm_abs "n" (type_rung (type_id "ℕ")
|
||||
(type_rung (type_id "BBNat")
|
||||
(type_abs "α"
|
||||
(type_fun (type_fun (type_var "α") (type_var "α"))
|
||||
(type_fun (type_var "α") (type_var "α"))))))
|
||||
|
||||
(expr_ascend (type_rung (type_id "ℕ") (type_id "BBNat"))
|
||||
(expr_ty_abs "α"
|
||||
(expr_tm_abs "s" (type_fun (type_var "α") (type_var "α"))
|
||||
(expr_tm_abs "z" (type_var "α")
|
||||
(expr_tm_app (expr_var "s")
|
||||
(expr_tm_app (expr_tm_app
|
||||
(expr_ty_app (expr_var "n") (type_var "α"))
|
||||
(expr_var "s"))
|
||||
(expr_var "z")))))))).
|
||||
|
||||
Definition e1 : expr :=
|
||||
(expr_let "bb-zero" (type_rung (type_id "ℕ")
|
||||
(type_rung (type_id "BBNat")
|
||||
(type_abs "α"
|
||||
(type_fun (type_fun (type_var "α") (type_var "α"))
|
||||
(type_fun (type_var "α") (type_var "α"))))))
|
||||
bb_zero
|
||||
(expr_tm_app (expr_tm_app (expr_var "+") (expr_var "bb-zero")) (expr_var "bb-zero"))
|
||||
).
|
||||
|
||||
Definition t1 : expr := (expr_tm_app (expr_var "x") (expr_var "x")).
|
||||
|
||||
Compute (expr_subst "x"
|
||||
(expr_ty_abs "α" (expr_tm_abs "a" (type_var "α") (expr_var "a")))
|
||||
bb_one
|
||||
).
|
||||
|
||||
Example example_let_reduction :
|
||||
e1 -->β (expr_tm_app (expr_tm_app (expr_var "+") bb_zero) bb_zero).
|
||||
Proof.
|
||||
apply E_AppLet.
|
||||
Qed.
|
||||
|
||||
Compute (expr_tm_app bb_succ bb_zero) -->β bb_one.
|
||||
|
||||
Example example_succ :
|
||||
(expr_tm_app bb_succ bb_zero) -->β bb_one.
|
||||
Proof.
|
||||
Admitted.
|
Loading…
Reference in a new issue