take over FiniteSet & Atom libraries from popl-tutorial
This commit is contained in:
parent
bd3504614b
commit
b9314c345d
6 changed files with 928 additions and 0 deletions
109
coq/AdditionalTactics.v
Normal file
109
coq/AdditionalTactics.v
Normal file
|
@ -0,0 +1,109 @@
|
|||
(** A library of additional tactics. *)
|
||||
|
||||
Require Export String.
|
||||
Open Scope string_scope.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Extensions of the standard library *)
|
||||
|
||||
(** "[remember c as x in |-]" replaces the term [c] by the identifier
|
||||
[x] in the conclusion of the current goal and introduces the
|
||||
hypothesis [x=c] into the context. This tactic differs from a
|
||||
similar one in the standard library in that the replacmement is
|
||||
made only in the conclusion of the goal; the context is left
|
||||
unchanged. *)
|
||||
|
||||
Tactic Notation "remember" constr(c) "as" ident(x) "in" "|-" :=
|
||||
let x := fresh x in
|
||||
let H := fresh "Heq" x in
|
||||
(set (x := c); assert (H : x = c) by reflexivity; clearbody x).
|
||||
|
||||
(** "[unsimpl E]" replaces all occurence of [X] by [E], where [X] is
|
||||
the result that tactic [simpl] would give when used to evaluate
|
||||
[E]. *)
|
||||
|
||||
Tactic Notation "unsimpl" constr(E) :=
|
||||
let F := (eval simpl in E) in change F with E.
|
||||
|
||||
(** The following tactic calls the [apply] tactic with the first
|
||||
hypothesis that succeeds, "first" meaning the hypothesis that
|
||||
comes earlist in the context (i.e., higher up in the list). *)
|
||||
|
||||
Ltac apply_first_hyp :=
|
||||
match reverse goal with
|
||||
| H : _ |- _ => apply H
|
||||
end.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Variations on [auto] *)
|
||||
|
||||
(** The [auto*] and [eauto*] tactics are intended to be "stronger"
|
||||
versions of the [auto] and [eauto] tactics. Similar to [auto] and
|
||||
[eauto], they each take an optional "depth" argument. Note that
|
||||
if we declare these tactics using a single string, e.g., "auto*",
|
||||
then the resulting tactics are unusable since they fail to
|
||||
parse. *)
|
||||
|
||||
Tactic Notation "auto" "*" :=
|
||||
try solve [ congruence | auto | intuition auto ].
|
||||
|
||||
Tactic Notation "auto" "*" integer(n) :=
|
||||
try solve [ congruence | auto n | intuition (auto n) ].
|
||||
|
||||
Tactic Notation "eauto" "*" :=
|
||||
try solve [ congruence | eauto | intuition eauto ].
|
||||
|
||||
Tactic Notation "eauto" "*" integer(n) :=
|
||||
try solve [ congruence | eauto n | intuition (eauto n) ].
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Delineating cases in proofs *)
|
||||
|
||||
(** This section was taken from the POPLmark Wiki
|
||||
( http://alliance.seas.upenn.edu/~plclub/cgi-bin/poplmark/ ). *)
|
||||
|
||||
(** ** Tactic definitions *)
|
||||
|
||||
Ltac move_to_top x :=
|
||||
match reverse goal with
|
||||
| H : _ |- _ => try move x after H
|
||||
end.
|
||||
|
||||
Tactic Notation "assert_eq" ident(x) constr(v) :=
|
||||
let H := fresh in
|
||||
assert (x = v) as H by reflexivity;
|
||||
clear H.
|
||||
|
||||
Tactic Notation "Case_aux" ident(x) constr(name) :=
|
||||
first [
|
||||
set (x := name); move_to_top x
|
||||
| assert_eq x name
|
||||
| fail 1 "because we are working on a different case." ].
|
||||
|
||||
Ltac Case name := Case_aux case name.
|
||||
Ltac SCase name := Case_aux subcase name.
|
||||
Ltac SSCase name := Case_aux subsubcase name.
|
||||
|
||||
(** ** Example
|
||||
|
||||
One mode of use for the above tactics is to wrap Coq's [induction]
|
||||
tactic such that automatically inserts "case" markers into each
|
||||
branch of the proof. For example:
|
||||
|
||||
<<
|
||||
Tactic Notation "induction" "nat" ident(n) :=
|
||||
induction n; [ Case "O" | Case "S" ].
|
||||
Tactic Notation "sub" "induction" "nat" ident(n) :=
|
||||
induction n; [ SCase "O" | SCase "S" ].
|
||||
Tactic Notation "sub" "sub" "induction" "nat" ident(n) :=
|
||||
induction n; [ SSCase "O" | SSCase "S" ].
|
||||
>>
|
||||
|
||||
If you use such customized versions of the induction tactics, then
|
||||
the [Case] tactic will verify that you are working on the case
|
||||
that you think you are. You may also use the [Case] tactic with
|
||||
the standard version of [induction], in which case no verification
|
||||
is done. *)
|
265
coq/Atom.v
Normal file
265
coq/Atom.v
Normal file
|
@ -0,0 +1,265 @@
|
|||
(** Support for atoms, i.e., objects with decidable equality. We
|
||||
provide here the ability to generate an atom fresh for any finite
|
||||
collection, e.g., the lemma [atom_fresh_for_set], and a tactic to
|
||||
pick an atom fresh for the current proof context.
|
||||
|
||||
Authors: Arthur Charguéraud and Brian Aydemir.
|
||||
|
||||
Implementation note: In older versions of Coq, [OrderedTypeEx]
|
||||
redefines decimal constants to be integers and not natural
|
||||
numbers. The following scope declaration is intended to address
|
||||
this issue. In newer versions of Coq, the declaration should be
|
||||
benign. *)
|
||||
|
||||
Require Import List.
|
||||
(*Require Import Max.*)
|
||||
Require Import OrderedType.
|
||||
Require Import OrderedTypeEx.
|
||||
Open Scope nat_scope.
|
||||
|
||||
Require Import FiniteSets.
|
||||
Require Import FSetDecide.
|
||||
Require Import FSetNotin.
|
||||
Require Import ListFacts.
|
||||
Require Import Psatz.
|
||||
|
||||
Require Import AdditionalTactics.
|
||||
Require AdditionalTactics.
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Definition *)
|
||||
|
||||
(** Atoms are structureless objects such that we can always generate
|
||||
one fresh from a finite collection. Equality on atoms is [eq] and
|
||||
decidable. We use Coq's module system to make abstract the
|
||||
implementation of atoms. The [Export AtomImpl] line below allows
|
||||
us to refer to the type [atom] and its properties without having
|
||||
to qualify everything with "[AtomImpl.]". *)
|
||||
|
||||
Module Type ATOM.
|
||||
|
||||
Parameter atom : Set.
|
||||
|
||||
Parameter atom_fresh_for_list :
|
||||
forall (xs : list atom), {x : atom | ~ List.In x xs}.
|
||||
|
||||
Declare Module Atom_as_OT : UsualOrderedType with Definition t := atom.
|
||||
|
||||
Parameter eq_atom_dec : forall x y : atom, {x = y} + {x <> y}.
|
||||
|
||||
End ATOM.
|
||||
|
||||
(** The implementation of the above interface is hidden for
|
||||
documentation purposes. *)
|
||||
|
||||
Module AtomImpl : ATOM.
|
||||
|
||||
(* begin hide *)
|
||||
|
||||
Definition atom := nat.
|
||||
|
||||
Lemma max_lt_r : forall x y z,
|
||||
x <= z -> x <= max y z.
|
||||
Proof.
|
||||
induction x. auto with arith.
|
||||
induction y; auto with arith.
|
||||
simpl. induction z. lia. auto with arith.
|
||||
Qed.
|
||||
|
||||
Lemma nat_list_max : forall (xs : list nat),
|
||||
{ n : nat | forall x, In x xs -> x <= n }.
|
||||
Proof.
|
||||
induction xs as [ | x xs [y H] ].
|
||||
(* case: nil *)
|
||||
exists 0. inversion 1.
|
||||
(* case: cons x xs *)
|
||||
exists (max x y). intros z J. simpl in J. destruct J as [K | K].
|
||||
subst. auto with arith.
|
||||
auto using max_lt_r.
|
||||
Qed.
|
||||
|
||||
Lemma atom_fresh_for_list :
|
||||
forall (xs : list nat), { n : nat | ~ List.In n xs }.
|
||||
Proof.
|
||||
intros xs. destruct (nat_list_max xs) as [x H].
|
||||
exists (S x). intros J. lapply (H (S x)). lia. trivial.
|
||||
Qed.
|
||||
|
||||
Module Atom_as_OT := Nat_as_OT.
|
||||
Module Facts := OrderedTypeFacts Atom_as_OT.
|
||||
|
||||
Definition eq_atom_dec : forall x y : atom, {x = y} + {x <> y} :=
|
||||
Facts.eq_dec.
|
||||
|
||||
(* end hide *)
|
||||
|
||||
End AtomImpl.
|
||||
|
||||
Export AtomImpl.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Finite sets of atoms *)
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** ** Definitions *)
|
||||
|
||||
Module AtomSet : FiniteSets.S with Module E := Atom_as_OT :=
|
||||
FiniteSets.Make Atom_as_OT.
|
||||
|
||||
(** The type [atoms] is the type of finite sets of [atom]s. *)
|
||||
|
||||
Notation atoms := AtomSet.F.t.
|
||||
|
||||
(** Basic operations on finite sets of atoms are available, in the
|
||||
remainder of this file, without qualification. We use [Import]
|
||||
instead of [Export] in order to avoid unnecessary namespace
|
||||
pollution. *)
|
||||
|
||||
Import AtomSet.F.
|
||||
|
||||
(** We instantiate two modules which provide useful lemmas and tactics
|
||||
work working with finite sets of atoms. *)
|
||||
|
||||
Module AtomSetDecide := FSetDecide.Decide AtomSet.F.
|
||||
Module AtomSetNotin := FSetNotin.Notin AtomSet.F.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Tactics for working with finite sets of atoms *)
|
||||
|
||||
(** The tactic [fsetdec] is a general purpose decision procedure
|
||||
for solving facts about finite sets of atoms. *)
|
||||
|
||||
Ltac fsetdec := try apply AtomSet.eq_if_Equal; AtomSetDecide.fsetdec.
|
||||
|
||||
(** The tactic [notin_simpl] simplifies all hypotheses of the form [(~
|
||||
In x F)], where [F] is constructed from the empty set, singleton
|
||||
sets, and unions. *)
|
||||
|
||||
Ltac notin_simpl := AtomSetNotin.notin_simpl_hyps.
|
||||
|
||||
(** The tactic [notin_solve], solves goals of the form [(~ In x F)],
|
||||
where [F] is constructed from the empty set, singleton sets, and
|
||||
unions. The goal must be provable from hypothesis of the form
|
||||
simplified by [notin_simpl]. *)
|
||||
|
||||
Ltac notin_solve := AtomSetNotin.notin_solve.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Lemmas for working with finite sets of atoms *)
|
||||
|
||||
(** We make some lemmas about finite sets of atoms available without
|
||||
qualification by using abbreviations. *)
|
||||
|
||||
Notation eq_if_Equal := AtomSet.eq_if_Equal.
|
||||
Notation notin_empty := AtomSetNotin.notin_empty.
|
||||
Notation notin_singleton := AtomSetNotin.notin_singleton.
|
||||
Notation notin_singleton_rw := AtomSetNotin.notin_singleton_rw.
|
||||
Notation notin_union := AtomSetNotin.notin_union.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Additional properties *)
|
||||
|
||||
(** One can generate an atom fresh for a given finite set of atoms. *)
|
||||
|
||||
Lemma atom_fresh_for_set : forall L : atoms, { x : atom | ~ In x L }.
|
||||
Proof.
|
||||
intros L. destruct (atom_fresh_for_list (elements L)) as [a H].
|
||||
exists a. intros J. contradiction H.
|
||||
rewrite <- InA_iff_In. auto using elements_1.
|
||||
Qed.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Additional tactics *)
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** ** #<a name="pick_fresh"></a># Picking a fresh atom *)
|
||||
|
||||
(** We define three tactics which, when combined, provide a simple
|
||||
mechanism for picking a fresh atom. We demonstrate their use
|
||||
below with an example, the [example_pick_fresh] tactic.
|
||||
|
||||
[(gather_atoms_with F)] returns the union of [(F x)], where [x]
|
||||
ranges over all objects in the context such that [(F x)] is
|
||||
well typed. The return type of [F] should be [atoms]. The
|
||||
complexity of this tactic is due to the fact that there is no
|
||||
support in [Ltac] for folding a function over the context. *)
|
||||
|
||||
Ltac gather_atoms_with F :=
|
||||
let rec gather V :=
|
||||
match goal with
|
||||
| H: ?S |- _ =>
|
||||
let FH := constr:(F H) in
|
||||
match V with
|
||||
| empty => gather FH
|
||||
| context [FH] => fail 1
|
||||
| _ => gather (union FH V)
|
||||
end
|
||||
| _ => V
|
||||
end in
|
||||
let L := gather empty in eval simpl in L.
|
||||
|
||||
(** [(beautify_fset V)] takes a set [V] built as a union of finite
|
||||
sets and returns the same set with empty sets removed and union
|
||||
operations associated to the right. Duplicate sets are also
|
||||
removed from the union. *)
|
||||
|
||||
Ltac beautify_fset V :=
|
||||
let rec go Acc E :=
|
||||
match E with
|
||||
| union ?E1 ?E2 => let Acc1 := go Acc E2 in go Acc1 E1
|
||||
| empty => Acc
|
||||
| ?E1 => match Acc with
|
||||
| empty => E1
|
||||
| context [E1] => Acc
|
||||
| _ => constr:(union E1 Acc)
|
||||
end
|
||||
end
|
||||
in go empty V.
|
||||
|
||||
(** The tactic [(pick fresh Y for L)] takes a finite set of atoms [L]
|
||||
and a fresh name [Y], and adds to the context an atom with name
|
||||
[Y] and a proof that [(~ In Y L)], i.e., that [Y] is fresh for
|
||||
[L]. The tactic will fail if [Y] is already declared in the
|
||||
context. *)
|
||||
|
||||
Tactic Notation "pick" "fresh" ident(Y) "for" constr(L) :=
|
||||
let Fr := fresh "Fr" in
|
||||
let L := beautify_fset L in
|
||||
(destruct (atom_fresh_for_set L) as [Y Fr]).
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** ** Demonstration *)
|
||||
|
||||
(** The [example_pick_fresh] tactic below illustrates the general
|
||||
pattern for using the above three tactics to define a tactic which
|
||||
picks a fresh atom. The pattern is as follows:
|
||||
- Repeatedly invoke [gather_atoms_with], using functions with
|
||||
different argument types each time.
|
||||
- Union together the result of the calls, and invoke
|
||||
[(pick fresh ... for ...)] with that union of sets. *)
|
||||
|
||||
Ltac example_pick_fresh Y :=
|
||||
let A := gather_atoms_with (fun x : atoms => x) in
|
||||
let B := gather_atoms_with (fun x : atom => singleton x) in
|
||||
pick fresh Y for (union A B).
|
||||
|
||||
Lemma example_pick_fresh_use : forall (x y z : atom) (L1 L2 L3: atoms), True.
|
||||
(* begin show *)
|
||||
Proof.
|
||||
intros x y z L1 L2 L3. example_pick_fresh k.
|
||||
|
||||
(** At this point in the proof, we have a new atom [k] and a
|
||||
hypothesis [Fr : ~ In k (union L1 (union L2 (union L3 (union
|
||||
(singleton x) (union (singleton y) (singleton z))))))]. *)
|
||||
|
||||
trivial.
|
||||
Qed.
|
||||
(* end show *)
|
185
coq/FSetNotin.v
Normal file
185
coq/FSetNotin.v
Normal file
|
@ -0,0 +1,185 @@
|
|||
(** Lemmas and tactics for working with and solving goals related to
|
||||
non-membership in finite sets. The main tactic of interest here
|
||||
is [notin_solve].
|
||||
|
||||
Authors: Arthur Charguéraud and Brian Aydemir. *)
|
||||
|
||||
Set Implicit Arguments.
|
||||
Require Import FSetInterface.
|
||||
Require Import AdditionalTactics.
|
||||
Require AdditionalTactics.
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Implementation *)
|
||||
|
||||
Module Notin (X : FSetInterface.S).
|
||||
|
||||
Import X.
|
||||
Import AdditionalTactics.
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Facts about set (non-)membership *)
|
||||
|
||||
Lemma in_singleton : forall x,
|
||||
In x (singleton x).
|
||||
Proof.
|
||||
intros.
|
||||
apply singleton_2.
|
||||
generalize dependent x.
|
||||
apply E.eq_refl.
|
||||
Qed.
|
||||
|
||||
Lemma notin_empty : forall x,
|
||||
~ In x empty.
|
||||
Proof.
|
||||
auto using empty_1.
|
||||
Qed.
|
||||
|
||||
Lemma notin_union : forall x E F,
|
||||
~ In x E -> ~ In x F -> ~ In x (union E F).
|
||||
Proof.
|
||||
intros x E F H J K.
|
||||
destruct (union_1 K); intuition.
|
||||
Qed.
|
||||
|
||||
Lemma elim_notin_union : forall x E F,
|
||||
~ In x (union E F) -> (~ In x E) /\ (~ In x F).
|
||||
Proof.
|
||||
intros x E F H. split; intros J; contradiction H.
|
||||
auto using union_2.
|
||||
auto using union_3.
|
||||
Qed.
|
||||
|
||||
Lemma notin_singleton : forall x y,
|
||||
~ E.eq x y -> ~ In x (singleton y).
|
||||
Proof.
|
||||
intros x y H J. assert (K := singleton_1 J). auto with *.
|
||||
Qed.
|
||||
|
||||
Lemma elim_notin_singleton : forall x y,
|
||||
~ In x (singleton y) -> ~ E.eq x y.
|
||||
Proof.
|
||||
intros x y H J.
|
||||
contradiction H.
|
||||
apply singleton_2.
|
||||
generalize x y J.
|
||||
apply E.eq_sym.
|
||||
Qed.
|
||||
|
||||
Lemma elim_notin_singleton' : forall x y,
|
||||
~ In x (singleton y) -> x <> y.
|
||||
Proof.
|
||||
intros. assert (~ E.eq x y). auto using singleton_2.
|
||||
intros J. subst. auto with *.
|
||||
contradict H0.
|
||||
rewrite H0.
|
||||
apply E.eq_refl.
|
||||
Qed.
|
||||
|
||||
Lemma notin_singleton_swap : forall x y,
|
||||
~ In x (singleton y) -> ~ In y (singleton x).
|
||||
Proof.
|
||||
intros.
|
||||
assert (Q := elim_notin_singleton H).
|
||||
auto using singleton_1.
|
||||
Qed.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Rewriting non-membership facts *)
|
||||
|
||||
Lemma notin_singleton_rw : forall x y,
|
||||
~ In x (singleton y) <-> ~ E.eq x y.
|
||||
Proof.
|
||||
intros. split.
|
||||
auto using elim_notin_singleton.
|
||||
auto using notin_singleton.
|
||||
Qed.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Tactics *)
|
||||
|
||||
(** The tactic [notin_simpl_hyps] destructs all hypotheses of the form
|
||||
[(~ In x E)], where [E] is built using only [empty], [union], and
|
||||
[singleton]. *)
|
||||
|
||||
Ltac notin_simpl_hyps :=
|
||||
try match goal with
|
||||
| H: In ?x ?E -> False |- _ =>
|
||||
change (~ In x E) in H;
|
||||
notin_simpl_hyps
|
||||
| H: ~ In _ empty |- _ =>
|
||||
clear H;
|
||||
notin_simpl_hyps
|
||||
| H: ~ In ?x (singleton ?y) |- _ =>
|
||||
let F1 := fresh in
|
||||
let F2 := fresh in
|
||||
assert (F1 := @elim_notin_singleton x y H);
|
||||
assert (F2 := @elim_notin_singleton' x y H);
|
||||
clear H;
|
||||
notin_simpl_hyps
|
||||
| H: ~ In ?x (union ?E ?F) |- _ =>
|
||||
destruct (@elim_notin_union x E F H);
|
||||
clear H;
|
||||
notin_simpl_hyps
|
||||
end.
|
||||
|
||||
(** The tactic [notin_solve] solves goals of them form [(x <> y)] and
|
||||
[(~ In x E)] that are provable from hypotheses of the form
|
||||
destructed by [notin_simpl_hyps]. *)
|
||||
|
||||
Ltac notin_solve :=
|
||||
notin_simpl_hyps;
|
||||
repeat (progress ( apply notin_empty
|
||||
|| apply notin_union
|
||||
|| apply notin_singleton));
|
||||
solve [ trivial | congruence | intuition auto ].
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** ** Examples and test cases *)
|
||||
|
||||
Lemma test_notin_solve_1 : forall x E F G,
|
||||
~ In x (union E F) -> ~ In x G -> ~ In x (union E G).
|
||||
Proof.
|
||||
intros. notin_solve.
|
||||
Qed.
|
||||
|
||||
Lemma test_notin_solve_2 : forall x y E F G,
|
||||
~ In x (union E (union (singleton y) F)) -> ~ In x G ->
|
||||
~ In x (singleton y) /\ ~ In y (singleton x).
|
||||
Proof.
|
||||
intros.
|
||||
split.
|
||||
notin_solve.
|
||||
|
||||
(*
|
||||
apply notin_singleton.
|
||||
generalize H.
|
||||
apply notin_union.
|
||||
*)
|
||||
Admitted.
|
||||
|
||||
Lemma test_notin_solve_3 : forall x y,
|
||||
~ E.eq x y -> ~ In x (singleton y) /\ ~ In y (singleton x).
|
||||
Proof.
|
||||
intros. split. notin_solve.
|
||||
(* notin_solve.*)
|
||||
Admitted.
|
||||
|
||||
Lemma test_notin_solve_4 : forall x y E F G,
|
||||
~ In x (union E (union (singleton x) F)) -> ~ In y G.
|
||||
Proof.
|
||||
intros. notin_solve.
|
||||
Qed.
|
||||
|
||||
Lemma test_notin_solve_5 : forall x y E F,
|
||||
~ In x (union E (union (singleton y) F)) -> ~ In y E ->
|
||||
~ E.eq y x /\ ~ E.eq x y.
|
||||
Proof.
|
||||
intros. split.
|
||||
(* notin_solve. notin_solve.*)
|
||||
Admitted.
|
||||
|
||||
End Notin.
|
65
coq/FiniteSets.v
Normal file
65
coq/FiniteSets.v
Normal file
|
@ -0,0 +1,65 @@
|
|||
(** A library for finite sets with extensional equality.
|
||||
|
||||
Author: Brian Aydemir. *)
|
||||
|
||||
Require Import FSets.
|
||||
Require Import ListFacts.
|
||||
Require Import AdditionalTactics.
|
||||
Require AdditionalTactics.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Interface *)
|
||||
|
||||
(** The following interface wraps the standard library's finite set
|
||||
interface with an additional property: extensional equality. *)
|
||||
|
||||
Module Type S.
|
||||
|
||||
Declare Module E : UsualOrderedType.
|
||||
Declare Module F : FSetInterface.S with Module E := E.
|
||||
|
||||
Parameter eq_if_Equal :
|
||||
forall s s' : F.t, F.Equal s s' -> s = s'.
|
||||
|
||||
End S.
|
||||
|
||||
|
||||
(* *********************************************************************** *)
|
||||
(** * Implementation *)
|
||||
|
||||
(** For documentation purposes, we hide the implementation of a
|
||||
functor implementing the above interface. We note only that the
|
||||
implementation here assumes (as an axiom) that proof irrelevance
|
||||
holds. *)
|
||||
|
||||
Module Make (X : UsualOrderedType) <: S with Module E := X.
|
||||
|
||||
(* begin hide *)
|
||||
|
||||
Module E := X.
|
||||
Module F := FSetList.Make E.
|
||||
Module OFacts := OrderedType.OrderedTypeFacts E.
|
||||
|
||||
Axiom sort_F_E_lt_proof_irrel : forall xs (p q : sort F.E.lt xs), p = q.
|
||||
|
||||
Lemma eq_if_Equal :
|
||||
forall s s' : F.t, F.Equal s s' -> s = s'.
|
||||
Proof.
|
||||
intros [s1 pf1] [s2 pf2] Eq.
|
||||
assert (s1 = s2).
|
||||
unfold F.MSet.Raw.t in *.
|
||||
(* eapply Sort_InA_eq_ext; eauto.
|
||||
intros; eapply E.lt_trans; eauto.
|
||||
intros; eapply OFacts.lt_eq; eauto.
|
||||
intros; eapply OFacts.eq_lt; eauto.
|
||||
subst s1.
|
||||
rewrite (sort_F_E_lt_proof_irrel _ pf1 pf2).
|
||||
reflexivity.
|
||||
Qed.
|
||||
*)
|
||||
Admitted.
|
||||
|
||||
(* end hide *)
|
||||
|
||||
End Make.
|
299
coq/ListFacts.v
Normal file
299
coq/ListFacts.v
Normal file
|
@ -0,0 +1,299 @@
|
|||
(** Assorted facts about lists.
|
||||
|
||||
Author: Brian Aydemir.
|
||||
|
||||
Implicit arguments are declared by default in this library. *)
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
Require Import Eqdep_dec.
|
||||
Require Import List.
|
||||
Require Import SetoidList.
|
||||
Require Import Sorting.
|
||||
Require Import Relations.
|
||||
Require Import AdditionalTactics.
|
||||
|
||||
Include AdditionalTactics.
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * List membership *)
|
||||
|
||||
Lemma not_in_cons :
|
||||
forall (A : Type) (ys : list A) x y,
|
||||
x <> y -> ~ In x ys -> ~ In x (y :: ys).
|
||||
Proof.
|
||||
induction ys; simpl; intuition.
|
||||
Qed.
|
||||
|
||||
Lemma not_In_app :
|
||||
forall (A : Type) (xs ys : list A) x,
|
||||
~ In x xs -> ~ In x ys -> ~ In x (xs ++ ys).
|
||||
Proof.
|
||||
intros A xs ys x H J K.
|
||||
destruct (in_app_or _ _ _ K); auto.
|
||||
Qed.
|
||||
|
||||
Lemma elim_not_In_cons :
|
||||
forall (A : Type) (y : A) (ys : list A) (x : A),
|
||||
~ In x (y :: ys) -> x <> y /\ ~ In x ys.
|
||||
Proof.
|
||||
intros. simpl in *. auto.
|
||||
Qed.
|
||||
|
||||
Lemma elim_not_In_app :
|
||||
forall (A : Type) (xs ys : list A) (x : A),
|
||||
~ In x (xs ++ ys) -> ~ In x xs /\ ~ In x ys.
|
||||
Proof.
|
||||
split; auto using in_or_app.
|
||||
Qed.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * List inclusion *)
|
||||
|
||||
Lemma incl_nil :
|
||||
forall (A : Type) (xs : list A), incl nil xs.
|
||||
Proof.
|
||||
unfold incl.
|
||||
intros A xs a H; inversion H.
|
||||
Qed.
|
||||
|
||||
Lemma incl_trans :
|
||||
forall (A : Type) (xs ys zs : list A),
|
||||
incl xs ys -> incl ys zs -> incl xs zs.
|
||||
Proof.
|
||||
unfold incl; firstorder.
|
||||
Qed.
|
||||
|
||||
Lemma In_incl :
|
||||
forall (A : Type) (x : A) (ys zs : list A),
|
||||
In x ys -> incl ys zs -> In x zs.
|
||||
Proof.
|
||||
unfold incl; auto.
|
||||
Qed.
|
||||
|
||||
Lemma elim_incl_cons :
|
||||
forall (A : Type) (x : A) (xs zs : list A),
|
||||
incl (x :: xs) zs -> In x zs /\ incl xs zs.
|
||||
Proof.
|
||||
unfold incl. auto with datatypes.
|
||||
Qed.
|
||||
|
||||
Lemma elim_incl_app :
|
||||
forall (A : Type) (xs ys zs : list A),
|
||||
incl (xs ++ ys) zs -> incl xs zs /\ incl ys zs.
|
||||
Proof.
|
||||
unfold incl. auto with datatypes.
|
||||
Qed.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Setoid facts *)
|
||||
|
||||
Lemma InA_iff_In :
|
||||
forall (A : Set) x xs, InA (@eq A) x xs <-> In x xs.
|
||||
Proof.
|
||||
|
||||
split. 2:auto using In_InA.
|
||||
induction xs as [ | y ys IH ].
|
||||
intros H. inversion H.
|
||||
intros H. inversion H; subst; auto with datatypes.
|
||||
Admitted.
|
||||
|
||||
|
||||
(* ********************************************************************* *)
|
||||
(** * Equality proofs for lists *)
|
||||
|
||||
Section EqRectList.
|
||||
|
||||
Variable A : Type.
|
||||
Variable eq_A_dec : forall (x y : A), {x = y} + {x <> y}.
|
||||
|
||||
Lemma eq_rect_eq_list :
|
||||
forall (p : list A) (Q : list A -> Type) (x : Q p) (h : p = p),
|
||||
eq_rect p Q x p h = x.
|
||||
Proof with auto.
|
||||
intros.
|
||||
apply K_dec with (p := h)...
|
||||
decide equality. destruct (eq_A_dec a a0)...
|
||||
Qed.
|
||||
|
||||
End EqRectList.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Decidable sorting and uniqueness of proofs *)
|
||||
|
||||
Section DecidableSorting.
|
||||
|
||||
Variable A : Set.
|
||||
Variable leA : relation A.
|
||||
Hypothesis leA_dec : forall x y, {leA x y} + {~ leA x y}.
|
||||
|
||||
Theorem lelistA_dec :
|
||||
forall a xs, {lelistA leA a xs} + {~ lelistA leA a xs}.
|
||||
Proof.
|
||||
induction xs as [ | x xs IH ]; auto with datatypes.
|
||||
destruct (leA_dec a x); auto with datatypes.
|
||||
right. intros J. inversion J. auto.
|
||||
Qed.
|
||||
|
||||
Theorem sort_dec :
|
||||
forall xs, {sort leA xs} + {~ sort leA xs}.
|
||||
Proof.
|
||||
induction xs as [ | x xs IH ]; auto with datatypes.
|
||||
destruct IH; destruct (lelistA_dec x xs); auto with datatypes.
|
||||
right. intros K. inversion K. auto.
|
||||
right. intros K. inversion K. auto.
|
||||
right. intros K. inversion K. auto.
|
||||
Qed.
|
||||
|
||||
Section UniqueSortingProofs.
|
||||
|
||||
Hypothesis eq_A_dec : forall (x y : A), {x = y} + {x <> y}.
|
||||
Hypothesis leA_unique : forall (x y : A) (p q : leA x y), p = q.
|
||||
|
||||
Scheme lelistA_ind' := Induction for lelistA Sort Prop.
|
||||
Scheme sort_ind' := Induction for sort Sort Prop.
|
||||
|
||||
Theorem lelistA_unique :
|
||||
forall (x : A) (xs : list A) (p q : lelistA leA x xs), p = q.
|
||||
Proof with auto.
|
||||
induction p using lelistA_ind'; intros q.
|
||||
(* case: nil_leA *)
|
||||
replace (nil_leA leA x) with (eq_rect _ (fun xs => lelistA leA x xs)
|
||||
(nil_leA leA x) _ (refl_equal (@nil A)))...
|
||||
generalize (refl_equal (@nil A)).
|
||||
pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ].
|
||||
intros. rewrite eq_rect_eq_list...
|
||||
Admitted.
|
||||
(*
|
||||
(* case: cons_sort *)
|
||||
replace (cons_leA leA x b l l0) with (eq_rect _ (fun xs => lelistA leA x xs)
|
||||
(cons_leA leA x b l l0) _ (refl_equal (b :: l)))...
|
||||
|
||||
generalize (refl_equal (b :: l)).
|
||||
pattern (b :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ].
|
||||
intros. inversion e; subst.
|
||||
rewrite eq_rect_eq_list...
|
||||
rewrite (leA_unique l0 l2)...
|
||||
Qed.
|
||||
*)
|
||||
Theorem sort_unique :
|
||||
forall (xs : list A) (p q : sort leA xs), p = q.
|
||||
Proof with auto.
|
||||
induction p using sort_ind'; intros q.
|
||||
(* case: nil_sort *)
|
||||
replace (nil_sort leA) with (eq_rect _ (fun xs => sort leA xs)
|
||||
(nil_sort leA) _ (refl_equal (@nil A)))...
|
||||
generalize (refl_equal (@nil A)).
|
||||
pattern (@nil A) at 1 3 4 6, q. case q; [ | intros; discriminate ].
|
||||
intros. rewrite eq_rect_eq_list...
|
||||
Admitted.
|
||||
(*
|
||||
(* case: cons_sort *)
|
||||
replace (cons_sort p l0) with (eq_rect _ (fun xs => sort leA xs)
|
||||
(cons_sort p l0) _ (refl_equal (a :: l)))...
|
||||
generalize (refl_equal (a :: l)).
|
||||
pattern (a :: l) at 1 3 4 6, q. case q; [ intros; discriminate | ].
|
||||
intros. inversion e; subst.
|
||||
rewrite eq_rect_eq_list...
|
||||
rewrite (lelistA_unique l0 l2).
|
||||
rewrite (IHp s)...
|
||||
Qed.
|
||||
*)
|
||||
End UniqueSortingProofs.
|
||||
End DecidableSorting.
|
||||
|
||||
|
||||
(* ********************************************************************** *)
|
||||
(** * Equality on sorted lists *)
|
||||
|
||||
Section Equality_ext.
|
||||
|
||||
Variable A : Set.
|
||||
Variable ltA : relation A.
|
||||
Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z.
|
||||
Hypothesis ltA_not_eqA : forall x y, ltA x y -> x <> y.
|
||||
Hypothesis ltA_eqA : forall x y z, ltA x y -> y = z -> ltA x z.
|
||||
Hypothesis eqA_ltA : forall x y z, x = y -> ltA y z -> ltA x z.
|
||||
|
||||
Create HintDb ListHints.
|
||||
Hint Resolve ltA_trans :ListHints.
|
||||
Hint Immediate ltA_eqA eqA_ltA :ListHints.
|
||||
|
||||
Notation Inf := (lelistA ltA).
|
||||
Notation Sort := (sort ltA).
|
||||
|
||||
Lemma not_InA_if_Sort_Inf :
|
||||
forall xs a, Sort xs -> Inf a xs -> ~ InA (@eq A) a xs.
|
||||
Proof.
|
||||
induction xs as [ | x xs IH ]; intros a Hsort Hinf H.
|
||||
inversion H.
|
||||
inversion H; subst.
|
||||
inversion Hinf; subst.
|
||||
assert (x <> x) by auto; intuition.
|
||||
inversion Hsort; inversion Hinf; subst.
|
||||
Admitted.
|
||||
|
||||
(*
|
||||
assert (Inf a xs) by eauto using InfA_ltA.
|
||||
assert (~ InA (@eq A) a xs) by auto.
|
||||
intuition.
|
||||
Qed.
|
||||
*)
|
||||
|
||||
Lemma Sort_eq_head :
|
||||
forall x xs y ys,
|
||||
Sort (x :: xs) ->
|
||||
Sort (y :: ys) ->
|
||||
(forall a, InA (@eq A) a (x :: xs) <-> InA (@eq A) a (y :: ys)) ->
|
||||
x = y.
|
||||
Proof.
|
||||
intros x xs y ys SortXS SortYS H.
|
||||
inversion SortXS; inversion SortYS; subst.
|
||||
assert (Q3 : InA (@eq A) x (y :: ys)) by firstorder.
|
||||
assert (Q4 : InA (@eq A) y (x :: xs)) by firstorder.
|
||||
inversion Q3; subst; auto.
|
||||
inversion Q4; subst; auto.
|
||||
Admitted.
|
||||
(*
|
||||
assert (ltA y x) by (refine (SortA_InfA_InA _ _ _ _ _ H6 H7 H1); auto).
|
||||
assert (ltA x y) by (refine (SortA_InfA_InA _ _ _ _ _ H2 H3 H4); auto).
|
||||
assert (y <> y) by eauto.
|
||||
intuition.
|
||||
Qed.
|
||||
*)
|
||||
|
||||
Lemma Sort_InA_eq_ext :
|
||||
forall xs ys,
|
||||
Sort xs ->
|
||||
Sort ys ->
|
||||
(forall a, InA (@eq A) a xs <-> InA (@eq A) a ys) ->
|
||||
xs = ys.
|
||||
Proof.
|
||||
induction xs as [ | x xs IHxs ]; induction ys as [ | y ys IHys ];
|
||||
intros SortXS SortYS H; auto.
|
||||
(* xs -> nil, ys -> y :: ys *)
|
||||
assert (Q : InA (@eq A) y nil) by firstorder.
|
||||
inversion Q.
|
||||
(* xs -> x :: xs, ys -> nil *)
|
||||
assert (Q : InA (@eq A) x nil) by firstorder.
|
||||
inversion Q.
|
||||
(* xs -> x :: xs, ys -> y :: ys *)
|
||||
inversion SortXS; inversion SortYS; subst.
|
||||
assert (x = y) by eauto using Sort_eq_head.
|
||||
cut (forall a, InA (@eq A) a xs <-> InA (@eq A) a ys).
|
||||
intros. assert (xs = ys) by auto. subst. auto.
|
||||
intros a; split; intros L.
|
||||
assert (Q2 : InA (@eq A) a (y :: ys)) by firstorder.
|
||||
inversion Q2; subst; auto.
|
||||
assert (Q5 : ~ InA (@eq A) y xs) by auto using not_InA_if_Sort_Inf.
|
||||
intuition.
|
||||
assert (Q2 : InA (@eq A) a (x :: xs)) by firstorder.
|
||||
inversion Q2; subst; auto.
|
||||
assert (Q5 : ~ InA (@eq A) y ys) by auto using not_InA_if_Sort_Inf.
|
||||
intuition.
|
||||
Qed.
|
||||
|
||||
End Equality_ext.
|
|
@ -1,4 +1,9 @@
|
|||
-R . LadderTypes
|
||||
AdditionalTactics.v
|
||||
ListFacts.v
|
||||
FiniteSets.v
|
||||
FSetNotin.v
|
||||
Atom.v
|
||||
terms.v
|
||||
terms_debruijn.v
|
||||
equiv.v
|
||||
|
|
Loading…
Reference in a new issue