wip
This commit is contained in:
parent
8da65e4d38
commit
bab13389d2
4 changed files with 158 additions and 31 deletions
|
@ -9,10 +9,22 @@ Include Typing.
|
|||
|
||||
Module Smallstep.
|
||||
|
||||
Reserved Notation " s '-->α' t " (at level 40).
|
||||
Reserved Notation " s '-->β' t " (at level 40).
|
||||
Reserved Notation " s '-->δ' t " (at level 40).
|
||||
Reserved Notation " s '-->eval' t " (at level 40).
|
||||
|
||||
Inductive alpha_step : expr_term -> expr_term -> Prop :=
|
||||
| E_Rename : forall x x' e,
|
||||
(expr_tm_abs x e) -->α (expr_tm_abs x' (expr_subst x (type_var x'))
|
||||
where "s '-->α' t" := (alpha_step s t).
|
||||
|
||||
|
||||
Example a1 : polymorphic_identity1 -->α polymorphic_identity2.
|
||||
Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||||
| E_App1 : forall e1 e1' e2,
|
||||
e1 -->β e1' ->
|
||||
|
|
68
coq/terms.v
68
coq/terms.v
|
@ -32,40 +32,62 @@ Inductive expr_term : Type :=
|
|||
| expr_descend : type_term -> expr_term -> expr_term
|
||||
.
|
||||
|
||||
Coercion type_var : string >-> type_term.
|
||||
Coercion expr_var : string >-> expr_term.
|
||||
(* values *)
|
||||
Inductive is_value : expr_term -> Prop :=
|
||||
| V_ValAbs : forall x τ e,
|
||||
(is_value (expr_tm_abs x τ e))
|
||||
|
||||
(*
|
||||
Coercion type_var : string >-> type_term.
|
||||
Coercion expr_var : string >-> expr_term.
|
||||
*)
|
||||
| V_TypAbs : forall τ e,
|
||||
(is_value (expr_ty_abs τ e))
|
||||
|
||||
| V_Ascend : forall τ e,
|
||||
(is_value e) ->
|
||||
(is_value (expr_ascend τ e))
|
||||
.
|
||||
|
||||
Declare Scope ladder_type_scope.
|
||||
Declare Scope ladder_expr_scope.
|
||||
Declare Custom Entry ladder_type.
|
||||
Declare Custom Entry ladder_expr.
|
||||
|
||||
Notation "[ e ]" := e (e custom ladder_type at level 80) : ladder_type_scope.
|
||||
Notation "[ t ]" := t
|
||||
(t custom ladder_type at level 80) : ladder_type_scope.
|
||||
Notation "'∀' x ',' t" := (type_univ x t)
|
||||
(t custom ladder_type at level 80, in custom ladder_type at level 80, x constr).
|
||||
Notation "'<' σ τ '>'" := (type_spec σ τ)
|
||||
(in custom ladder_type at level 80, left associativity) : ladder_type_scope.
|
||||
Notation "'(' τ ')'" := τ
|
||||
(in custom ladder_type at level 70) : ladder_type_scope.
|
||||
Notation "σ '->' τ" := (type_fun σ τ)
|
||||
(in custom ladder_type at level 75, right associativity) : ladder_type_scope.
|
||||
Notation "σ '->morph' τ" := (type_morph σ τ)
|
||||
(in custom ladder_type at level 75, right associativity, τ at level 80) : ladder_type_scope.
|
||||
Notation "σ '~' τ" := (type_ladder σ τ)
|
||||
(in custom ladder_type at level 70, right associativity) : ladder_type_scope.
|
||||
Notation "'$' x '$'" := (type_id x%string)
|
||||
(in custom ladder_type at level 0, x constr) : ladder_type_scope.
|
||||
Notation "'%' x '%'" := (type_var x%string)
|
||||
(in custom ladder_type at level 0, x constr) : ladder_type_scope.
|
||||
|
||||
(* TODO: allow any variable names in notation, not just α,β,γ *)
|
||||
Notation "'∀α.' τ" := (type_univ "α" τ) (in custom ladder_type at level 80) : ladder_type_scope.
|
||||
Notation "'∀β.' τ" := (type_univ "β" τ) (in custom ladder_type at level 80) : ladder_type_scope.
|
||||
Notation "'∀γ.' τ" := (type_univ "γ" τ) (in custom ladder_type at level 80) : ladder_type_scope.
|
||||
Notation "'<' σ τ '>'" := (type_spec σ τ) (in custom ladder_type at level 80, left associativity) : ladder_type_scope.
|
||||
Notation "'(' τ ')'" := τ (in custom ladder_type at level 70) : ladder_type_scope.
|
||||
Notation "σ '->' τ" := (type_fun σ τ) (in custom ladder_type at level 75, right associativity) : ladder_type_scope.
|
||||
Notation "σ '->morph' τ" := (type_morph σ τ) (in custom ladder_type at level 75, right associativity) : ladder_type_scope.
|
||||
Notation "σ '~' τ" := (type_ladder σ τ) (in custom ladder_type at level 70, right associativity) : ladder_type_scope.
|
||||
Notation "'α'" := (type_var "α") (in custom ladder_type at level 60, right associativity) : ladder_type_scope.
|
||||
Notation "'β'" := (type_var "β") (in custom ladder_type at level 60, right associativity) : ladder_type_scope.
|
||||
Notation "'γ'" := (type_var "γ") (in custom ladder_type at level 60, right associativity) : ladder_type_scope.
|
||||
Notation "[[ e ]]" := e
|
||||
(e custom ladder_expr at level 80) : ladder_expr_scope.
|
||||
Notation "'%' x '%'" := (expr_var x%string)
|
||||
(in custom ladder_expr at level 0, x constr) : ladder_expr_scope.
|
||||
Notation "'λ' x τ '↦' e" := (expr_tm_abs x τ e) (in custom ladder_expr at level 0, x constr, τ custom ladder_type at level 99, e custom ladder_expr at level 99).
|
||||
Notation "'Λ' t '↦' e" := (expr_ty_abs t e)
|
||||
(in custom ladder_expr at level 0, t constr, e custom ladder_expr at level 80).
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Definition t1 : type_term := [ ∀α.∀β.(α~β~γ)->β->(α->α)->β ].
|
||||
Check [ ∀"α", (< $"Seq"$ %"α"% > ~ < $"List"$ %"α"% >) ].
|
||||
|
||||
Definition polymorphic_identity1 : expr_term := [[ Λ"T" ↦ λ"x"%"T"% ↦ %"x"% ]].
|
||||
Definition polymorphic_identity2 : expr_term := [[ Λ"T" ↦ λ"y"%"T"% ↦ %"y"% ]].
|
||||
|
||||
Compute polymorphic_identity1.
|
||||
|
||||
Compute t1.
|
||||
Close Scope ladder_type_scope.
|
||||
|
||||
|
||||
Close Scope ladder_expr_scope.
|
||||
|
||||
End Terms.
|
||||
|
|
59
coq/typing.v
59
coq/typing.v
|
@ -4,11 +4,66 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
Include Equiv.
|
||||
|
||||
Module Typing.
|
||||
|
||||
|
||||
(** Subtyping *)
|
||||
|
||||
Reserved Notation "s ':<=' t" (at level 50).
|
||||
Reserved Notation "s '~=~' t" (at level 50).
|
||||
|
||||
Inductive is_syntactic_subtype : type_term -> type_term -> Prop :=
|
||||
| S_Refl : forall t t', (t === t') -> (t :<= t')
|
||||
| S_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
|
||||
| S_SynRepr : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y)
|
||||
where "s ':<=' t" := (is_syntactic_subtype s t).
|
||||
|
||||
Inductive is_semantic_subtype : type_term -> type_term -> Prop :=
|
||||
| S_Synt : forall x y,
|
||||
(x :<= y) -> (x ~=~ y)
|
||||
|
||||
| S_SemRepr : forall x y y',
|
||||
(type_ladder x y) ~=~ (type_ladder x y')
|
||||
where "s '~=~' t" := (is_semantic_subtype s t).
|
||||
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
|
||||
Example sub0 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > >
|
||||
~ < $"Seq"$ $"Char"$ > ]
|
||||
:<=
|
||||
[ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
apply S_SynRepr.
|
||||
apply S_Refl.
|
||||
apply L_Refl.
|
||||
Qed.
|
||||
|
||||
Example sub1 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ]
|
||||
:<= [ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ].
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ].
|
||||
set [ < $"Seq"$ $"Char"$ > ].
|
||||
set (t0 === t).
|
||||
set (t :<= t0).
|
||||
set (t :<= t2).
|
||||
apply S_Trans with t1.
|
||||
apply S_Refl.
|
||||
Qed.
|
||||
|
||||
|
||||
(** Typing Derivation *)
|
||||
|
||||
Inductive context : Type :=
|
||||
| ctx_assign : string -> type_term -> context -> context
|
||||
| ctx_empty : context
|
||||
|
@ -17,7 +72,8 @@ Inductive context : Type :=
|
|||
Inductive context_contains : context -> string -> type_term -> Prop :=
|
||||
| C_take : forall (x:string) (X:type_term) (Γ:context),
|
||||
(context_contains (ctx_assign x X Γ) x X)
|
||||
| C_shuffle : forall x X y Y Γ,
|
||||
|
||||
| C_shuffle : forall x X y Y (Γ:context),
|
||||
(context_contains Γ x X) ->
|
||||
(context_contains (ctx_assign y Y Γ) x X).
|
||||
|
||||
|
@ -55,6 +111,7 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
|
||||
|
||||
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
|
||||
|
||||
| T_Compatible : forall Γ x τ,
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
\usepackage{mathpartir}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{url}
|
||||
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage{minted}
|
||||
\usemintedstyle{tango}
|
||||
|
||||
|
@ -52,11 +52,25 @@
|
|||
|
||||
|
||||
\begin{abstract}
|
||||
This paper presents a minimal core calculus extending the \(\lambda\)-calculus by a polymorphic type-system similar to SystemF, but in addition it introduces a new type-constructor called the \emph{ladder-type}.
|
||||
Using ladder-types, multi-layered embeddings of higher-level data-types into lower-level data-types can be described by a type-level structure.
|
||||
By facilitating automatic transformations between semantically compatible datatypes, ladder-typing opens up a new paradigm of abstraction.
|
||||
We formally define the syntax \& semantics of this calculus and prove its \emph{type soundness}.
|
||||
Further we show how the Boehm-Berarducci encoding can be used to implement algebraic datatypes on the basis of the introduced core calculus.
|
||||
This work explores the idea of \emph{representational polymorphism}
|
||||
to treat the coexistence of multiple equivalent representational forms for a single abstract concept.
|
||||
|
||||
|
||||
interchangeability
|
||||
%Our goal is a type system to support the seamless integration of
|
||||
%which may arise by consequence of external interfaces or internal optimization.
|
||||
|
||||
For the study of its formalism, we extend the \emph{polymorphic lambda-calculus} by a new type-constructor,
|
||||
called the \emph{ladder-type} in order to encode a \emph{represented-as} relationship into our type-terms.
|
||||
Based on this extended type-structure, we first define a subtyping relation to capture
|
||||
a notion of structural embedding of higher-level types into lower-level types
|
||||
which is then relaxed into \emph{semantic subtyping},
|
||||
where for a certain expected type, an equivalent representation implementing the same abstract type
|
||||
is accepted as well. In that case, a coercion is inserted implicitly to transform the underlying datastructure
|
||||
while keeping all semantical properties of the type intact.
|
||||
We specify our typing-rules accordingly, give an algorithm that manifests all implicit coercions in a program
|
||||
and prove its \emph{soundness}.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
|
@ -64,6 +78,29 @@ Further we show how the Boehm-Berarducci encoding can be used to implement algeb
|
|||
|
||||
|
||||
%\newpage
|
||||
\section{Introduction}
|
||||
While certain representational forms might be fixed already at the boundaries of an application,
|
||||
internally, some other representations might be desired for reasons of simplicity and efficiency.
|
||||
Further, differing complexity-profiles of certain representations might even have the potential to complement
|
||||
each other and coexist in a single application.
|
||||
Often however, implementations become heavily dependent on concrete data formats
|
||||
and require technical knowledge of the low-level data structures.
|
||||
Making use of multiple such representations additionally requires careful transformation of data.
|
||||
|
||||
\todo{serialization}
|
||||
\todo{memory layout optimizations}
|
||||
\todo{difference to traditional coercions (static cast)}
|
||||
\todo{relation with inheritance based subtyping: bottom-up vs top-down inheritance vs ladder-types}
|
||||
|
||||
\todo{related work: type specific languages}
|
||||
|
||||
In order to facilitate programming at "high-level", we introduce a type-system that is able to disambiguate
|
||||
this multiplicity of representations and facilitate implicit coercions between them.
|
||||
We claim this to aid in (1) forgetting details about representational details during program composition
|
||||
and (2) keeping the system flexible enough to introduce representational optimizations at a later stage without
|
||||
compromising semantic correctness.
|
||||
|
||||
|
||||
\section{Core Calculus}
|
||||
\subsection{Syntax}
|
||||
|
||||
|
@ -301,7 +338,6 @@ Coq definition is at \hyperref[coq:subst-type]{subst.v:\ref{coq:subst-type}}.
|
|||
|
||||
|
||||
\begin{definition}[Substitution in Expressions]
|
||||
\todo{complete}
|
||||
Given an expression-variable assignment \(\psi_e = \{ \metavariable{x_1} \mapsto \metavariable{t_1}, \quad \metavariable{x_2} \mapsto \metavariable{t_2}, \quad \dots \}\),
|
||||
the thereby induced substitution \(\overline{\psi_e}\) replaces all \emph{free} occurences of the expression variables \(\metavariable{x_i}\)
|
||||
in an expression \(e \in \nonterm{E} \) with the \(\psi_e(\metavariable{x_i})\)
|
||||
|
|
Loading…
Reference in a new issue