complete type distribute/condense definitions
This commit is contained in:
parent
221c017640
commit
d08144434c
1 changed files with 41 additions and 5 deletions
46
coq/equiv.v
46
coq/equiv.v
|
@ -61,7 +61,12 @@ Admitted.
|
|||
|
||||
Reserved Notation "S '-->distribute-ladder' T" (at level 40).
|
||||
Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
||||
| L_DistributeOverApp : forall x y y',
|
||||
| L_DistributeOverSpec1 : forall x x' y,
|
||||
(type_spec (type_ladder x x') y)
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_spec x y) (type_spec x' y))
|
||||
|
||||
| L_DistributeOverSpec2 : forall x y y',
|
||||
(type_spec x (type_ladder y y'))
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_spec x y) (type_spec x y'))
|
||||
|
@ -76,13 +81,28 @@ Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
|||
-->distribute-ladder
|
||||
(type_ladder (type_fun x y) (type_fun x y'))
|
||||
|
||||
| L_DistributeOverMorph1 : forall x x' y,
|
||||
(type_morph (type_ladder x x') y)
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_morph x y) (type_morph x' y))
|
||||
|
||||
| L_DistributeOverMorph2 : forall x y y',
|
||||
(type_morph x (type_ladder y y'))
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_morph x y) (type_morph x y'))
|
||||
|
||||
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
||||
|
||||
|
||||
|
||||
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
||||
Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
||||
| L_CondenseOverApp : forall x y y',
|
||||
| L_CondenseOverSpec1 : forall x x' y,
|
||||
(type_ladder (type_spec x y) (type_spec x' y))
|
||||
-->condense-ladder
|
||||
(type_spec (type_ladder x x') y)
|
||||
|
||||
| L_CondenseOverSpec2 : forall x y y',
|
||||
(type_ladder (type_spec x y) (type_spec x y'))
|
||||
-->condense-ladder
|
||||
(type_spec x (type_ladder y y'))
|
||||
|
@ -97,6 +117,16 @@ Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
|||
-->condense-ladder
|
||||
(type_fun x (type_ladder y y'))
|
||||
|
||||
| L_CondenseOverMorph1 : forall x x' y,
|
||||
(type_ladder (type_morph x y) (type_morph x' y))
|
||||
-->condense-ladder
|
||||
(type_morph (type_ladder x x') y)
|
||||
|
||||
| L_CondenseOverMorph2 : forall x y y',
|
||||
(type_ladder (type_morph x y) (type_morph x y'))
|
||||
-->condense-ladder
|
||||
(type_morph x (type_ladder y y'))
|
||||
|
||||
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
||||
|
||||
|
||||
|
@ -110,9 +140,12 @@ Lemma distribute_inverse :
|
|||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_CondenseOverApp.
|
||||
apply L_CondenseOverSpec1.
|
||||
apply L_CondenseOverSpec2.
|
||||
apply L_CondenseOverFun1.
|
||||
apply L_CondenseOverFun2.
|
||||
apply L_CondenseOverMorph1.
|
||||
apply L_CondenseOverMorph2.
|
||||
Qed.
|
||||
|
||||
(** Inversion Lemma:
|
||||
|
@ -125,9 +158,12 @@ Lemma condense_inverse :
|
|||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_DistributeOverApp.
|
||||
apply L_DistributeOverSpec1.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply L_DistributeOverFun1.
|
||||
apply L_DistributeOverFun2.
|
||||
apply L_DistributeOverMorph1.
|
||||
apply L_DistributeOverMorph2.
|
||||
Qed.
|
||||
|
||||
|
||||
|
@ -331,7 +367,7 @@ Example example_type_eq :
|
|||
(type_spec (type_id "Seq") (type_id "Byte"))).
|
||||
Proof.
|
||||
apply L_Distribute.
|
||||
apply L_DistributeOverApp.
|
||||
apply L_DistributeOverSpec2.
|
||||
Qed.
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue