organize coq sources in subdirectories
This commit is contained in:
parent
30fe571a39
commit
d690d6dcdc
25 changed files with 32 additions and 1698 deletions
|
@ -1,28 +1,17 @@
|
|||
-R . LadderTypes
|
||||
AdditionalTactics.v
|
||||
ListFacts.v
|
||||
FiniteSets.v
|
||||
FSetNotin.v
|
||||
Atom.v
|
||||
Metatheory.v
|
||||
metatheory/AdditionalTactics.v
|
||||
metatheory/ListFacts.v
|
||||
metatheory/FiniteSets.v
|
||||
metatheory/FSetNotin.v
|
||||
metatheory/Atom.v
|
||||
metatheory/Metatheory.v
|
||||
|
||||
terms_debruijn.v
|
||||
equiv_debruijn.v
|
||||
subtype_debruijn.v
|
||||
context_debruijn.v
|
||||
morph_debruijn.v
|
||||
typing_debruijn.v
|
||||
eval_debruijn.v
|
||||
subst_lemmas_debruijn.v
|
||||
terms/debruijn.v
|
||||
terms/equiv.v
|
||||
terms/eval.v
|
||||
typing/context.v
|
||||
typing/subtype.v
|
||||
typing/morph.v
|
||||
typing/typing.v
|
||||
lemmas/subst_lemmas.v
|
||||
|
||||
|
||||
terms.v
|
||||
equiv.v
|
||||
subst.v
|
||||
subtype.v
|
||||
context.v
|
||||
morph.v
|
||||
typing.v
|
||||
smallstep.v
|
||||
soundness.v
|
||||
bbencode.v
|
||||
|
|
|
@ -1,15 +0,0 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
|
||||
|
||||
Inductive context : Type :=
|
||||
| ctx_assign : string -> type_term -> context -> context
|
||||
| ctx_empty : context
|
||||
.
|
||||
|
||||
Inductive context_contains : context -> string -> type_term -> Prop :=
|
||||
| C_take : forall (x:string) (X:type_term) (Γ:context),
|
||||
(context_contains (ctx_assign x X Γ) x X)
|
||||
| C_shuffle : forall x X y Y Γ,
|
||||
(context_contains Γ x X) ->
|
||||
(context_contains (ctx_assign y Y Γ) x X).
|
423
coq/equiv.v
423
coq/equiv.v
|
@ -1,423 +0,0 @@
|
|||
(* This module defines an equivalence relation
|
||||
* on type-terms.
|
||||
*
|
||||
* In general, we want distributivity of ladders
|
||||
* over all other type constructors, e.g. type-
|
||||
* specializations or function-types.
|
||||
*
|
||||
* Formally, we define two rewrite rules that
|
||||
* shall define how we are able to rewrite type-terms
|
||||
* such that they remain equivalent.
|
||||
*
|
||||
* (1) `-->distribute-ladder` which distributes
|
||||
* ladder types over other type constructors, e.g.
|
||||
* <S T~U> -->distribute-ladder <S T> ~ <S U>.
|
||||
*
|
||||
* (2) `-->condense-ladder` which does the
|
||||
* inverse operation, e.g.
|
||||
* <S T> ~ <S U> -->condense-ladder <S T~U>
|
||||
*
|
||||
* When applied exhaustively, each rewrite rule yields
|
||||
* a normal form, namely *Ladder Normal Form (LNF)*, which
|
||||
* is reached by exhaustive application of `-->distribute-ladder`,
|
||||
* and *Parameter Normal Form (PNF)*, which is reached by exhaustive
|
||||
* application of `-->condense-ladder`.
|
||||
*
|
||||
* The equivalence relation `===` over type-terms is then defined
|
||||
* as the reflexive and transitive hull over `-->distribute-ladder`
|
||||
* and `-->condense-ladder`. Since the latter two are the inverse
|
||||
* rewrite-step of each other, `===` is symmetric and thus `===`
|
||||
* satisfies all properties required of an equivalence relation.
|
||||
*)
|
||||
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
From Coq Require Import Strings.String.
|
||||
|
||||
(** Alpha conversion in types *)
|
||||
|
||||
Reserved Notation "S '--->α' T" (at level 40).
|
||||
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
||||
| TAlpha_Rename : forall x y t,
|
||||
(type_univ x t) --->α (type_univ y (type_subst x (type_var y) t))
|
||||
|
||||
| TAlpha_SubUniv : forall x τ τ',
|
||||
(τ --->α τ') ->
|
||||
[< ∀x,τ >] --->α [< ∀x,τ' >]
|
||||
|
||||
| TAlpha_SubSpec1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
[< <τ1 τ2> >] --->α [< <τ1' τ2> >]
|
||||
|
||||
| TAlpha_SubSpec2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
[< <τ1 τ2> >] --->α [< <τ1 τ2'> >]
|
||||
|
||||
| TAlpha_SubFun1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
[< τ1 -> τ2 >] --->α [< τ1' -> τ2 >]
|
||||
|
||||
| TAlpha_SubFun2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
[< τ1 -> τ2 >] --->α [< τ1 -> τ2' >]
|
||||
|
||||
| TAlpha_SubMorph1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
[< τ1 ->morph τ2 >] --->α [< τ1' ->morph τ2 >]
|
||||
|
||||
| TAlpha_SubMorph2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
[< τ1 ->morph τ2 >] --->α [< τ1 ->morph τ2' >]
|
||||
|
||||
| TAlpha_SubLadder1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
[< τ1 ~ τ2 >] --->α [< τ1' ~ τ2 >]
|
||||
|
||||
| TAlpha_SubLadder2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
[< τ1 ~ τ2 >] --->α [< τ1 ~ τ2' >]
|
||||
|
||||
where "S '--->α' T" := (type_conv_alpha S T).
|
||||
|
||||
(** Alpha conversion is symmetric *)
|
||||
Lemma type_alpha_symm :
|
||||
forall σ τ,
|
||||
(σ --->α τ) -> (τ --->α σ).
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
- admit.
|
||||
- auto using TAlpha_Rename,type_subst,type_subst_symm, TAlpha_SubUniv.
|
||||
- auto using TAlpha_SubSpec1.
|
||||
- auto using TAlpha_SubSpec2.
|
||||
- auto using TAlpha_SubFun1.
|
||||
- auto using TAlpha_SubFun2.
|
||||
- auto using TAlpha_SubMorph1.
|
||||
- auto using TAlpha_SubMorph2.
|
||||
- auto using TAlpha_SubLadder1.
|
||||
- auto using TAlpha_SubLadder2.
|
||||
Admitted.
|
||||
|
||||
(** Define all rewrite steps $\label{coq:type-dist}$ *)
|
||||
|
||||
Reserved Notation "S '-->distribute-ladder' T" (at level 40).
|
||||
Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
||||
| L_DistributeOverSpec1 : forall x x' y,
|
||||
[< <x~x' y> >]
|
||||
-->distribute-ladder
|
||||
[< <x y>~<x' y> >]
|
||||
|
||||
| L_DistributeOverSpec2 : forall x y y',
|
||||
[< <x y~y'> >]
|
||||
-->distribute-ladder
|
||||
[< <x y>~<x y'> >]
|
||||
|
||||
| L_DistributeOverFun1 : forall x x' y,
|
||||
[< (x~x' -> y) >]
|
||||
-->distribute-ladder
|
||||
[< (x -> y) ~ (x' -> y) >]
|
||||
|
||||
| L_DistributeOverFun2 : forall x y y',
|
||||
[< (x -> y~y') >]
|
||||
-->distribute-ladder
|
||||
[< (x -> y) ~ (x -> y') >]
|
||||
|
||||
| L_DistributeOverMorph1 : forall x x' y,
|
||||
[< (x~x' ->morph y) >]
|
||||
-->distribute-ladder
|
||||
[< (x ->morph y) ~ (x' ->morph y) >]
|
||||
|
||||
| L_DistributeOverMorph2 : forall x y y',
|
||||
(type_morph x (type_ladder y y'))
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_morph x y) (type_morph x y'))
|
||||
|
||||
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
||||
|
||||
|
||||
|
||||
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
||||
Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
||||
| L_CondenseOverSpec1 : forall x x' y,
|
||||
[< <x y>~<x' y> >]
|
||||
-->condense-ladder
|
||||
[< <x~x' y> >]
|
||||
|
||||
| L_CondenseOverSpec2 : forall x y y',
|
||||
[< <x y>~<x y'> >]
|
||||
-->condense-ladder
|
||||
[< <x y~y'> >]
|
||||
|
||||
| L_CondenseOverFun1 : forall x x' y,
|
||||
[< (x -> y) ~ (x' -> y) >]
|
||||
-->condense-ladder
|
||||
[< (x~x') -> y >]
|
||||
|
||||
| L_CondenseOverFun2 : forall x y y',
|
||||
[< (x -> y) ~ (x -> y') >]
|
||||
-->condense-ladder
|
||||
[< (x -> y~y') >]
|
||||
|
||||
| L_CondenseOverMorph1 : forall x x' y,
|
||||
[< (x ->morph y) ~ (x' ->morph y) >]
|
||||
-->condense-ladder
|
||||
[< (x~x' ->morph y) >]
|
||||
|
||||
| L_CondenseOverMorph2 : forall x y y',
|
||||
[< (x ->morph y) ~ (x ->morph y') >]
|
||||
-->condense-ladder
|
||||
[< (x ->morph y~y') >]
|
||||
|
||||
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
||||
|
||||
|
||||
(** Inversion Lemma:
|
||||
`-->distribute-ladder` is the inverse of `-->condense-ladder
|
||||
*)
|
||||
Lemma distribute_inverse :
|
||||
forall x y,
|
||||
x -->distribute-ladder y ->
|
||||
y -->condense-ladder x.
|
||||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_CondenseOverSpec1.
|
||||
apply L_CondenseOverSpec2.
|
||||
apply L_CondenseOverFun1.
|
||||
apply L_CondenseOverFun2.
|
||||
apply L_CondenseOverMorph1.
|
||||
apply L_CondenseOverMorph2.
|
||||
Qed.
|
||||
|
||||
(** Inversion Lemma:
|
||||
`-->condense-ladder` is the inverse of `-->distribute-ladder`
|
||||
*)
|
||||
Lemma condense_inverse :
|
||||
forall x y,
|
||||
x -->condense-ladder y ->
|
||||
y -->distribute-ladder x.
|
||||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_DistributeOverSpec1.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply L_DistributeOverFun1.
|
||||
apply L_DistributeOverFun2.
|
||||
apply L_DistributeOverMorph1.
|
||||
apply L_DistributeOverMorph2.
|
||||
Qed.
|
||||
|
||||
|
||||
(** Define the equivalence relation as reflexive, transitive hull. $\label{coq:type-equiv}$ *)
|
||||
|
||||
Reserved Notation " S '===' T " (at level 40).
|
||||
Inductive type_eq : type_term -> type_term -> Prop :=
|
||||
| TEq_Refl : forall x,
|
||||
x === x
|
||||
|
||||
| TEq_Trans : forall x y z,
|
||||
x === y ->
|
||||
y === z ->
|
||||
x === z
|
||||
|
||||
| TEq_SubFun : forall x x' y y',
|
||||
x === x' ->
|
||||
y === y' ->
|
||||
[< x -> y >] === [< x' -> y' >]
|
||||
|
||||
| TEq_SubMorph : forall x x' y y',
|
||||
x === x' ->
|
||||
y === y' ->
|
||||
[< x ->morph y >] === [< x' ->morph y' >]
|
||||
|
||||
| TEq_LadderAssocLR : forall x y z,
|
||||
[< (x~y)~z >]
|
||||
===
|
||||
[< x~(y~z) >]
|
||||
|
||||
| TEq_LadderAssocRL : forall x y z,
|
||||
[< x~(y~z) >]
|
||||
===
|
||||
[< (x~y)~z >]
|
||||
|
||||
| TEq_Alpha : forall x y,
|
||||
x --->α y ->
|
||||
x === y
|
||||
|
||||
| TEq_Distribute : forall x y,
|
||||
x -->distribute-ladder y ->
|
||||
x === y
|
||||
|
||||
| TEq_Condense : forall x y,
|
||||
x -->condense-ladder y ->
|
||||
x === y
|
||||
|
||||
where "S '===' T" := (type_eq S T).
|
||||
|
||||
|
||||
|
||||
(** Symmetry of === *)
|
||||
Lemma TEq_Symm :
|
||||
forall x y,
|
||||
(x === y) -> (y === x).
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
|
||||
apply TEq_Refl.
|
||||
|
||||
apply TEq_Trans with (y:=y).
|
||||
apply IHtype_eq2.
|
||||
apply IHtype_eq1.
|
||||
|
||||
apply TEq_SubFun.
|
||||
auto. auto.
|
||||
apply TEq_SubMorph.
|
||||
auto. auto.
|
||||
apply TEq_LadderAssocRL.
|
||||
apply TEq_LadderAssocLR.
|
||||
|
||||
apply type_alpha_symm in H.
|
||||
apply TEq_Alpha.
|
||||
apply H.
|
||||
|
||||
apply TEq_Condense.
|
||||
apply distribute_inverse.
|
||||
apply H.
|
||||
|
||||
apply TEq_Distribute.
|
||||
apply condense_inverse.
|
||||
apply H.
|
||||
Qed.
|
||||
|
||||
(** "flat" types do not contain ladders $\label{coq:type-flat}$ *)
|
||||
Inductive type_is_flat : type_term -> Prop :=
|
||||
| FlatVar : forall x, (type_is_flat (type_var x))
|
||||
| FlatId : forall x, (type_is_flat (type_id x))
|
||||
| FlatApp : forall x y,
|
||||
(type_is_flat x) ->
|
||||
(type_is_flat y) ->
|
||||
(type_is_flat (type_spec x y))
|
||||
|
||||
| FlatFun : forall x y,
|
||||
(type_is_flat x) ->
|
||||
(type_is_flat y) ->
|
||||
(type_is_flat (type_fun x y))
|
||||
|
||||
| FlatSub : forall x v,
|
||||
(type_is_flat x) ->
|
||||
(type_is_flat (type_univ v x))
|
||||
.
|
||||
|
||||
(** Ladder Normal Form:
|
||||
exhaustive application of -->distribute-ladder
|
||||
*)
|
||||
Inductive type_is_lnf : type_term -> Prop :=
|
||||
| LNF : forall x : type_term,
|
||||
(not (exists y:type_term, x -->distribute-ladder y))
|
||||
-> (type_is_lnf x)
|
||||
.
|
||||
|
||||
(** Parameter Normal Form:
|
||||
exhaustive application of -->condense-ladder
|
||||
*)
|
||||
Inductive type_is_pnf : type_term -> Prop :=
|
||||
| PNF : forall x : type_term,
|
||||
(not (exists y:type_term, x -->condense-ladder y))
|
||||
-> (type_is_pnf x)
|
||||
.
|
||||
|
||||
(** Any term in LNF either is flat, or is a ladder T1~T2 where T1 is flat and T2 is in LNF *)
|
||||
Lemma lnf_shape :
|
||||
forall τ:type_term,
|
||||
(type_is_lnf τ) -> ((type_is_flat τ) \/ (exists τ1 τ2, τ = (type_ladder τ1 τ2) /\ (type_is_flat τ1) /\ (type_is_lnf τ2)))
|
||||
.
|
||||
Proof.
|
||||
intros τ H.
|
||||
induction τ.
|
||||
|
||||
left.
|
||||
apply FlatId.
|
||||
|
||||
left.
|
||||
apply FlatVar.
|
||||
(*
|
||||
left.
|
||||
apply IHτ1 in H.
|
||||
apply FlatFun.
|
||||
apply H.
|
||||
destruct H.
|
||||
destruct H.
|
||||
|
||||
apply IHτ1.
|
||||
*)
|
||||
admit.
|
||||
admit.
|
||||
admit.
|
||||
admit.
|
||||
Admitted.
|
||||
|
||||
(** every type has an equivalent LNF *)
|
||||
Lemma lnf_normalizing :
|
||||
forall t, exists t', (t === t') /\ (type_is_lnf t').
|
||||
Proof.
|
||||
intros.
|
||||
destruct t.
|
||||
|
||||
exists (type_id s).
|
||||
split. apply TEq_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
admit.
|
||||
admit.
|
||||
|
||||
exists (type_univ s t).
|
||||
split.
|
||||
apply TEq_Refl.
|
||||
apply LNF.
|
||||
|
||||
Admitted.
|
||||
|
||||
(** every type has an equivalent PNF *)
|
||||
Lemma pnf_normalizing :
|
||||
forall t, exists t', (t === t') /\ (type_is_pnf t').
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Lemma lnf_uniqueness :
|
||||
forall t t' t'',
|
||||
(t === t') /\ (type_is_lnf t') /\ (t === t'') /\ (type_is_lnf t'')
|
||||
-> t = t'.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
(**
|
||||
* Examples
|
||||
*)
|
||||
|
||||
Example example_flat_type :
|
||||
type_is_flat [< <$"PosInt"$ $"10"$> >].
|
||||
Proof.
|
||||
apply FlatApp.
|
||||
apply FlatId.
|
||||
apply FlatId.
|
||||
Qed.
|
||||
|
||||
Example example_lnf_type :
|
||||
type_is_lnf [< [$"Char"$] ~ [$"Byte"$] >].
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Example example_type_eq :
|
||||
[< [$"Char"$ ~ $"Byte"$] >]
|
||||
===
|
||||
[< [$"Char"$] ~ [$"Byte"$] >]
|
||||
.
|
||||
Proof.
|
||||
apply TEq_Distribute.
|
||||
apply L_DistributeOverSpec2.
|
||||
Qed.
|
|
@ -1,7 +1,7 @@
|
|||
Require Import terms_debruijn.
|
||||
Require Import Atom.
|
||||
Require Import Metatheory.
|
||||
Require Import FSetNotin.
|
||||
Require Import debruijn.
|
||||
|
||||
(*
|
||||
* Substitution has no effect if the variable is not free
|
92
coq/morph.v
92
coq/morph.v
|
@ -1,92 +0,0 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
|
||||
(* Given a context, there is a morphism path from τ to τ' *)
|
||||
Reserved Notation "Γ '|-' σ '~>' τ" (at level 101, σ at next level, τ at next level).
|
||||
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Inductive morphism_path : context -> type_term -> type_term -> Prop :=
|
||||
| M_Sub : forall Γ τ τ',
|
||||
(τ :<= τ') ->
|
||||
(Γ |- τ ~> τ')
|
||||
|
||||
| M_Single : forall Γ h τ τ',
|
||||
(context_contains Γ h [< τ ->morph τ' >]) ->
|
||||
(Γ |- τ ~> τ')
|
||||
|
||||
| M_Chain : forall Γ τ τ' τ'',
|
||||
(Γ |- τ ~> τ') ->
|
||||
(Γ |- τ' ~> τ'') ->
|
||||
(Γ |- τ ~> τ'')
|
||||
|
||||
| M_Lift : forall Γ σ τ τ',
|
||||
(Γ |- τ ~> τ') ->
|
||||
(Γ |- [< σ ~ τ >] ~> [< σ ~ τ' >])
|
||||
|
||||
| M_MapSeq : forall Γ τ τ',
|
||||
(Γ |- τ ~> τ') ->
|
||||
(Γ |- [< [τ] >] ~> [< [τ'] >])
|
||||
|
||||
where "Γ '|-' s '~>' t" := (morphism_path Γ s t).
|
||||
|
||||
Lemma id_morphism_path : forall Γ τ, Γ |- τ ~> τ.
|
||||
Proof.
|
||||
intros.
|
||||
apply M_Sub, TSubRepr_Refl, TEq_Refl.
|
||||
Qed.
|
||||
|
||||
Inductive translate_morphism_path : context -> type_term -> type_term -> expr_term -> Prop :=
|
||||
| Translate_Descend : forall Γ τ τ',
|
||||
(τ :<= τ') ->
|
||||
(translate_morphism_path Γ τ τ'
|
||||
(expr_morph "x" τ [{ %"x"% des τ' }]))
|
||||
|
||||
| Translate_Lift : forall Γ σ τ τ' m,
|
||||
(Γ |- τ ~> τ') ->
|
||||
(translate_morphism_path Γ τ τ' m) ->
|
||||
(translate_morphism_path Γ [< σ ~ τ >] [< σ ~ τ' >]
|
||||
(expr_morph "x" [< σ ~ τ >] [{ (m (%"x"% des τ)) as σ }]))
|
||||
|
||||
| Translate_Single : forall Γ h τ τ',
|
||||
(context_contains Γ h [< τ ->morph τ' >]) ->
|
||||
(translate_morphism_path Γ τ τ' [{ %h% }])
|
||||
|
||||
| Translate_Chain : forall Γ τ τ' τ'' m1 m2,
|
||||
(translate_morphism_path Γ τ τ' m1) ->
|
||||
(translate_morphism_path Γ τ' τ'' m2) ->
|
||||
(translate_morphism_path Γ τ τ''
|
||||
(expr_morph "x" τ [{ m2 (m1 %"x"%) }]))
|
||||
|
||||
| Translate_MapSeq : forall Γ τ τ' m,
|
||||
(translate_morphism_path Γ τ τ' m) ->
|
||||
(translate_morphism_path Γ [< [τ] >] [< [τ'] >]
|
||||
[{
|
||||
λ"xs",[τ] ↦morph (%"map"% # τ # τ' m %"xs"%)
|
||||
}])
|
||||
.
|
||||
|
||||
Example morphism_paths :
|
||||
(ctx_assign "degrees-to-turns" [< $"Angle"$~$"Degrees"$~$"ℝ"$ ->morph $"Angle"$~$"Turns"$~$"ℝ"$ >]
|
||||
(ctx_assign "turns-to-radians" [< $"Angle"$~$"Turns"$~$"ℝ"$ ->morph $"Angle"$~$"Radians"$~$"ℝ"$ >]
|
||||
ctx_empty))
|
||||
|
||||
|- [< [ $"Hue"$~$"Angle"$~$"Degrees"$~$"ℝ"$ ] >]
|
||||
~> [< [ $"Hue"$~$"Angle"$~$"Radians"$~$"ℝ"$ ] >]
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
apply M_MapSeq.
|
||||
apply M_Lift.
|
||||
apply M_Chain with (τ':=[<$"Angle"$~$"Turns"$~$"ℝ"$>]).
|
||||
apply M_Single with (h:="degrees-to-turns"%string).
|
||||
apply C_take.
|
||||
|
||||
apply M_Single with (h:="turns-to-radians"%string).
|
||||
apply C_shuffle.
|
||||
apply C_take.
|
||||
Qed.
|
137
coq/smallstep.v
137
coq/smallstep.v
|
@ -1,137 +0,0 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import subtype.
|
||||
Require Import typing.
|
||||
|
||||
Reserved Notation " s '-->α' t " (at level 40).
|
||||
Reserved Notation " s '-->β' t " (at level 40).
|
||||
|
||||
Inductive expr_alpha : expr_term -> expr_term -> Prop :=
|
||||
| EAlpha_Rename : forall x x' τ e,
|
||||
(expr_abs x τ e) -->α (expr_abs x' τ (expr_subst x (expr_var x') e))
|
||||
|
||||
| EAlpha_TyRename : forall α α' e,
|
||||
(expr_ty_abs α e) -->α (expr_ty_abs α' (expr_specialize α (type_var α') e))
|
||||
|
||||
| EAlpha_SubAbs : forall x τ e e',
|
||||
(e -->α e') ->
|
||||
[{ λ x , τ ↦ e }] -->α [{ λ x , τ ↦ e' }]
|
||||
|
||||
| EAlpha_SubTyAbs : forall α e e',
|
||||
(e -->α e') ->
|
||||
[{ Λ α ↦ e }] -->α [{ Λ α ↦ e' }]
|
||||
|
||||
| EAlpha_SubApp1 : forall e1 e1' e2,
|
||||
(e1 -->α e1') ->
|
||||
[{ e1 e2 }] -->α [{ e1' e2 }]
|
||||
|
||||
| EAlpha_SubApp2 : forall e1 e2 e2',
|
||||
(e2 -->α e2') ->
|
||||
[{ e1 e2 }] -->α [{ e1 e2' }]
|
||||
|
||||
where "s '-->α' t" := (expr_alpha s t).
|
||||
|
||||
|
||||
Example a1 : polymorphic_identity1 -->α polymorphic_identity2.
|
||||
Proof.
|
||||
unfold polymorphic_identity1.
|
||||
unfold polymorphic_identity2.
|
||||
apply EAlpha_SubTyAbs.
|
||||
apply EAlpha_Rename.
|
||||
Qed.
|
||||
|
||||
|
||||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||||
| E_App1 : forall e1 e1' e2,
|
||||
e1 -->β e1' ->
|
||||
[{ e1 e2 }] -->β [{ e1' e2 }]
|
||||
|
||||
| E_App2 : forall v1 e2 e2',
|
||||
(is_value v1) ->
|
||||
e2 -->β e2' ->
|
||||
[{ v1 e2 }] -->β [{ v1 e2' }]
|
||||
|
||||
| E_TypApp : forall e e' τ,
|
||||
e -->β e' ->
|
||||
[{ Λ τ ↦ e }] -->β [{ Λ τ ↦ e' }]
|
||||
|
||||
| E_TypAppLam : forall α e τ,
|
||||
[{ (Λ α ↦ e) # τ }] -->β (expr_specialize α τ e)
|
||||
|
||||
| E_AppLam : forall x τ e a,
|
||||
[{ (λ x , τ ↦ e) a }] -->β (expr_subst x a e)
|
||||
|
||||
| E_AppMorph : forall x τ e a,
|
||||
[{ (λ x , τ ↦morph e) a }] -->β (expr_subst x a e)
|
||||
|
||||
| E_Let : forall x e a,
|
||||
[{ let x := a in e }] -->β (expr_subst x a e)
|
||||
|
||||
| E_StripAscend : forall τ e,
|
||||
[{ e as τ }] -->β e
|
||||
|
||||
| E_StripDescend : forall τ e,
|
||||
[{ e des τ }] -->β e
|
||||
|
||||
| E_Ascend : forall τ e e',
|
||||
(e -->β e') ->
|
||||
[{ e as τ }] -->β [{ e' as τ }]
|
||||
|
||||
| E_AscendCollapse : forall τ' τ e,
|
||||
[{ (e as τ) as τ' }] -->β [{ e as (τ'~τ) }]
|
||||
|
||||
| E_DescendCollapse : forall τ' τ e,
|
||||
(τ':<=τ) ->
|
||||
[{ (e des τ') des τ }] -->β [{ e des τ }]
|
||||
|
||||
where "s '-->β' t" := (beta_step s t).
|
||||
|
||||
Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
|
||||
| Multi_Refl : forall (x : X), multi R x x
|
||||
| Multi_Step : forall (x y z : X),
|
||||
R x y ->
|
||||
multi R y z ->
|
||||
multi R x z.
|
||||
|
||||
Notation " s -->α* t " := (multi expr_alpha s t) (at level 40).
|
||||
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
|
||||
|
||||
|
||||
|
||||
Example reduce1 :
|
||||
[{
|
||||
let "deg2turns" :=
|
||||
(λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph ((%"/"% (%"x"% des $"ℝ"$) %"360"%) as $"Angle"$~$"Turns"$))
|
||||
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
|
||||
}]
|
||||
-->β*
|
||||
[{
|
||||
((%"/"% %"60"%) %"360"%) as $"Angle"$~$"Turns"$
|
||||
}].
|
||||
Proof.
|
||||
apply Multi_Step with (y:=[{ (λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$)) (%"60"% as $"Angle"$~$"Degrees"$) }]).
|
||||
apply E_Let.
|
||||
|
||||
apply Multi_Step with (y:=(expr_subst "x" [{%"60"% as $"Angle"$~$"Degrees"$}] [{ (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$) }])).
|
||||
apply E_AppMorph.
|
||||
simpl.
|
||||
|
||||
apply Multi_Step with (y:=[{ ((%"/"% (%"60"% as $"Angle"$~$"Degrees"$)) %"360"%) as $"Angle"$~$"Turns"$ }]).
|
||||
apply E_Ascend.
|
||||
apply E_App1.
|
||||
apply E_App2.
|
||||
apply V_Abs, VAbs_Var.
|
||||
apply E_StripDescend.
|
||||
|
||||
apply Multi_Step with (y:=[{ (%"/"% %"60"% %"360"%) as $"Angle"$~$"Turns"$ }]).
|
||||
apply E_Ascend.
|
||||
apply E_App1.
|
||||
apply E_App2.
|
||||
apply V_Abs, VAbs_Var.
|
||||
apply E_StripAscend.
|
||||
|
||||
apply Multi_Refl.
|
||||
Qed.
|
359
coq/soundness.v
359
coq/soundness.v
|
@ -1,359 +0,0 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
Require Import morph.
|
||||
Require Import smallstep.
|
||||
Require Import typing.
|
||||
|
||||
Lemma typing_weakening : forall Γ e τ x σ,
|
||||
(Γ |- e \is τ) ->
|
||||
((ctx_assign x σ Γ) |- e \is τ)
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
|
||||
- apply T_Var.
|
||||
apply C_shuffle.
|
||||
apply H.
|
||||
|
||||
- apply T_Let with (σ:=σ0).
|
||||
apply IHexpr_type1.
|
||||
admit.
|
||||
Admitted.
|
||||
|
||||
Lemma typing_subst : forall Γ x σ s e τ,
|
||||
(ctx_assign x σ Γ) |- e \is τ ->
|
||||
Γ |- s \is σ ->
|
||||
Γ |- (expr_subst x s e) \is τ.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Lemma typing_tsubst : forall Γ α σ e τ,
|
||||
Γ |- e \is τ ->
|
||||
Γ |- (expr_specialize α σ e) \is (type_subst α σ τ).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
Lemma map_type : forall Γ,
|
||||
Γ |- [{ %"map"% }] \is [<
|
||||
∀"σ",∀"τ", (%"σ"% -> %"τ"%) -> [%"σ"%] -> [%"τ"%]
|
||||
>].
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Lemma specialized_map_type : forall Γ τ τ',
|
||||
Γ |- [{ %"map"% # τ # τ' }] \is [<
|
||||
(τ -> τ') -> [τ] -> [τ']
|
||||
>].
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
|
||||
(* morphism has valid typing *)
|
||||
Lemma morphism_path_solves_type : forall Γ τ τ' m,
|
||||
(translate_morphism_path Γ τ τ' m) ->
|
||||
Γ |- m \is (type_morph τ τ')
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
|
||||
(* Sub *)
|
||||
apply T_MorphAbs.
|
||||
apply T_Descend with (τ:=τ).
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply H.
|
||||
|
||||
(* Lift *)
|
||||
apply T_MorphAbs.
|
||||
apply T_Ascend.
|
||||
apply T_App with (σ':=τ) (σ:=τ).
|
||||
apply T_MorphFun.
|
||||
apply typing_weakening.
|
||||
apply IHtranslate_morphism_path.
|
||||
apply T_Descend with (τ:=(type_ladder σ τ)).
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl.
|
||||
apply id_morphism_path.
|
||||
|
||||
(* Single *)
|
||||
apply T_Var.
|
||||
apply H.
|
||||
|
||||
(* Chain *)
|
||||
apply T_MorphAbs.
|
||||
apply T_App with (σ':=τ') (σ:=τ') (τ:=τ'').
|
||||
apply T_MorphFun.
|
||||
apply typing_weakening.
|
||||
apply IHtranslate_morphism_path2.
|
||||
|
||||
apply T_App with (σ':=τ) (σ:=τ) (τ:=τ').
|
||||
apply T_MorphFun.
|
||||
apply typing_weakening.
|
||||
apply IHtranslate_morphism_path1.
|
||||
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply id_morphism_path.
|
||||
apply id_morphism_path.
|
||||
|
||||
(* Map Sequence *)
|
||||
apply T_MorphAbs.
|
||||
apply T_App with (σ':=(type_spec (type_id "Seq") τ)) (σ:=(type_spec (type_id "Seq") τ)).
|
||||
apply T_App with (σ':=(type_fun τ τ')) (σ:=(type_fun τ τ')).
|
||||
|
||||
apply specialized_map_type.
|
||||
apply typing_weakening.
|
||||
apply T_MorphFun.
|
||||
apply IHtranslate_morphism_path.
|
||||
|
||||
apply id_morphism_path.
|
||||
auto using T_Var, C_take.
|
||||
apply id_morphism_path.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
(* reduction step preserves well-typedness *)
|
||||
Lemma preservation : forall Γ e e' τ,
|
||||
(Γ |- e \is τ) ->
|
||||
(e -->β e') ->
|
||||
(Γ |- e' \is τ)
|
||||
.
|
||||
Proof.
|
||||
intros Γ e e' τ Typ Red.
|
||||
generalize dependent e'.
|
||||
induction Typ; intros e' Red.
|
||||
|
||||
(* `e` is Variable *)
|
||||
- inversion Red.
|
||||
|
||||
(* `e` is Let *)
|
||||
- inversion Red.
|
||||
subst.
|
||||
apply typing_subst with (σ:=σ).
|
||||
auto.
|
||||
auto.
|
||||
|
||||
(* `e` is Type-Abstraction *)
|
||||
- inversion Red.
|
||||
subst.
|
||||
apply T_TypeAbs.
|
||||
auto.
|
||||
|
||||
(* `e` is Type-Application *)
|
||||
- inversion Red.
|
||||
admit.
|
||||
(*
|
||||
apply typing_tsubst.
|
||||
admit.
|
||||
*)
|
||||
|
||||
(* `e` is abstraction *)
|
||||
- inversion Red.
|
||||
|
||||
(* `e` is morphism *)
|
||||
- inversion Red.
|
||||
|
||||
(* `e` is Application *)
|
||||
- inversion Red.
|
||||
|
||||
* apply T_App with (σ':=σ') (σ:=σ).
|
||||
apply IHTyp1.
|
||||
auto. auto. auto.
|
||||
|
||||
* apply T_App with (σ':=σ') (σ:=σ).
|
||||
auto using IHTyp2.
|
||||
auto. auto.
|
||||
|
||||
* apply typing_subst with (σ:=σ').
|
||||
subst.
|
||||
admit.
|
||||
auto.
|
||||
|
||||
* apply typing_subst with (σ:=σ').
|
||||
admit.
|
||||
auto.
|
||||
|
||||
(* `e` is Morphism *)
|
||||
- auto using T_MorphFun.
|
||||
|
||||
(* `e` is Ascend *)
|
||||
- admit.
|
||||
(*
|
||||
apply IHexpr_type.
|
||||
inversion Red.
|
||||
*)
|
||||
|
||||
(* `e` is Descension *)
|
||||
- intros.
|
||||
apply T_DescendImplicit with (τ:=τ).
|
||||
auto. auto.
|
||||
|
||||
(* `e` is descension *)
|
||||
- apply T_DescendImplicit with (τ:=τ).
|
||||
apply IHTyp.
|
||||
admit.
|
||||
auto.
|
||||
Admitted.
|
||||
|
||||
(* translation of expression preserves typing *)
|
||||
Lemma translation_preservation : forall Γ e e' τ,
|
||||
(Γ |- e \is τ) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(Γ |- e' \is τ)
|
||||
.
|
||||
Proof.
|
||||
intros Γ e e' τ Typ Transl.
|
||||
generalize dependent e'.
|
||||
intros e' Transl.
|
||||
induction Transl.
|
||||
|
||||
(* e is Variable *)
|
||||
- apply H.
|
||||
|
||||
(* e is Let-Binding *)
|
||||
- apply T_Let with (τ:=τ) (σ:=σ).
|
||||
auto. auto.
|
||||
|
||||
- auto using T_TypeAbs.
|
||||
|
||||
(* e is Type-Application *)
|
||||
- apply T_TypeApp.
|
||||
admit.
|
||||
|
||||
- auto using T_Abs.
|
||||
- auto using T_MorphAbs.
|
||||
|
||||
(* e is Application *)
|
||||
- apply T_App with (σ':=σ) (σ:=σ) (τ:=τ).
|
||||
auto.
|
||||
apply T_App with (σ':=σ') (σ:=σ') (τ:=σ).
|
||||
apply T_MorphFun.
|
||||
apply morphism_path_solves_type.
|
||||
auto. auto.
|
||||
apply id_morphism_path.
|
||||
apply id_morphism_path.
|
||||
|
||||
(* e is Morphism *)
|
||||
- auto using T_MorphFun.
|
||||
|
||||
(* e is Ascension *)
|
||||
- auto using T_Ascend.
|
||||
|
||||
(* e is Desecension *)
|
||||
- apply T_Descend with (τ:=τ).
|
||||
auto. auto.
|
||||
Admitted.
|
||||
|
||||
(* e is stuck when it is neither a value, nor can it be reduced *)
|
||||
Definition is_stuck (e:expr_term) : Prop :=
|
||||
~(is_value e) ->
|
||||
~(exists e', e -->β e')
|
||||
.
|
||||
|
||||
(* the translation any well typed term is not stuck *)
|
||||
Lemma progress :
|
||||
forall Γ e τ e',
|
||||
(Γ |- e \is τ) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
~(is_stuck e')
|
||||
.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
(* every well-typed expression is translated,
|
||||
* such that it be reduced to a value
|
||||
*)
|
||||
Theorem soundness :
|
||||
forall Γ e e' τ,
|
||||
(Γ |- e \is τ) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(exists v, (e' -->β* v) /\ (is_value v) /\ (Γ |- v \is τ))
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
induction H0.
|
||||
|
||||
(* `e` is Variable *)
|
||||
- exists (expr_var x).
|
||||
split. apply Multi_Refl.
|
||||
split. apply V_Abs,VAbs_Var.
|
||||
apply H.
|
||||
|
||||
(* `e` is Let-Binding *)
|
||||
- exists (expr_subst x e' t').
|
||||
split.
|
||||
apply Multi_Step with (y:=(expr_subst x e' t')).
|
||||
apply E_Let with (x:=x) (a:=e') (e:=t').
|
||||
apply Multi_Refl.
|
||||
admit.
|
||||
(*
|
||||
split.
|
||||
unfold expr_subst.
|
||||
induction t'.
|
||||
|
||||
exists (expr_subst x e' (expr_var s)).
|
||||
split.
|
||||
unfold expr_subst.
|
||||
apply E_Let.
|
||||
*)
|
||||
|
||||
(* `e` is Type-Abstraction *)
|
||||
- exists (expr_ty_abs α e').
|
||||
split.
|
||||
apply Multi_Refl.
|
||||
split.
|
||||
apply V_Abs, VAbs_TypAbs.
|
||||
apply T_TypeAbs.
|
||||
apply translation_preservation with (e:=e).
|
||||
apply H0.
|
||||
apply H1.
|
||||
|
||||
(* `e` is Type-Application *)
|
||||
- admit.
|
||||
|
||||
(* `e`is Abstraction *)
|
||||
- exists (expr_abs x σ e').
|
||||
split. apply Multi_Refl.
|
||||
split. apply V_Abs, VAbs_Abs.
|
||||
apply T_Abs.
|
||||
apply translation_preservation with (e:=e).
|
||||
apply H0.
|
||||
apply H2.
|
||||
|
||||
(* `e` is Morphism Abstraction *)
|
||||
- exists (expr_morph x σ e').
|
||||
split. apply Multi_Refl.
|
||||
split. apply V_Abs, VAbs_Morph.
|
||||
apply T_MorphAbs.
|
||||
apply translation_preservation with (e:=e).
|
||||
apply H0.
|
||||
apply H2.
|
||||
|
||||
(* `e` is Application *)
|
||||
- admit.
|
||||
|
||||
(* `e` is morphism *)
|
||||
- admit.
|
||||
|
||||
(* `e` is Ascension *)
|
||||
- admit.
|
||||
|
||||
(* `e` is Descension *)
|
||||
- admit.
|
||||
Admitted.
|
||||
|
152
coq/subst.v
152
coq/subst.v
|
@ -1,152 +0,0 @@
|
|||
From Coq Require Import Strings.String.
|
||||
From Coq Require Import Lists.List.
|
||||
Import ListNotations.
|
||||
Require Import terms.
|
||||
|
||||
|
||||
Fixpoint type_fv (τ : type_term) {struct τ} : (list string) :=
|
||||
match τ with
|
||||
| type_id s => []
|
||||
| type_var α => [α]
|
||||
| type_univ α τ => (remove string_dec α (type_fv τ))
|
||||
| type_spec σ τ => (type_fv σ) ++ (type_fv τ)
|
||||
| type_fun σ τ => (type_fv σ) ++ (type_fv τ)
|
||||
| type_morph σ τ => (type_fv σ) ++ (type_fv τ)
|
||||
| type_ladder σ τ => (type_fv σ) ++ (type_fv τ)
|
||||
end.
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Example ex_type_fv1 :
|
||||
(In "T"%string (type_fv [< ∀"U",%"T"% >]))
|
||||
.
|
||||
Proof. simpl. left. auto. Qed.
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Example ex_type_fv2 :
|
||||
~(In "T"%string (type_fv [< ∀"T",%"T"% >]))
|
||||
.
|
||||
Proof. simpl. auto. Qed.
|
||||
|
||||
(* scoped variable substitution in type terms $\label{coq:subst-type}$ *)
|
||||
Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) : type_term :=
|
||||
match t0 with
|
||||
| type_var name => if (eqb v name) then n else t0
|
||||
| type_fun t1 t2 => (type_fun (type_subst v n t1) (type_subst v n t2))
|
||||
| type_univ x t => if (eqb v x) then t0 else type_univ x (type_subst v n t)
|
||||
| type_spec t1 t2 => (type_spec (type_subst v n t1) (type_subst v n t2))
|
||||
| type_ladder t1 t2 => (type_ladder (type_subst v n t1) (type_subst v n t2))
|
||||
| t => t
|
||||
end.
|
||||
|
||||
(*
|
||||
|
||||
Inductive type_subst1 (x:string) (σ:type_term) : type_term -> type_term -> Prop :=
|
||||
| TSubst_VarReplace :
|
||||
(type_subst1 x σ (type_var x) σ)
|
||||
|
||||
| TSubst_VarKeep : forall y,
|
||||
(x <> y) ->
|
||||
(type_subst1 x σ (type_var y) (type_var y))
|
||||
|
||||
| TSubst_UnivReplace : forall y τ τ',
|
||||
~(x = y) ->
|
||||
~(type_var_free y σ) ->
|
||||
(type_subst1 x σ τ τ') ->
|
||||
(type_subst1 x σ (type_univ y τ) (type_univ y τ'))
|
||||
|
||||
| TSubst_Id : forall n,
|
||||
(type_subst1 x σ (type_id n) (type_id n))
|
||||
|
||||
| TSubst_Spec : forall τ1 τ2 τ1' τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_spec τ1 τ2) (type_spec τ1' τ2'))
|
||||
|
||||
| TSubst_Fun : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_fun τ1 τ2) (type_fun τ1' τ2'))
|
||||
|
||||
| TSubst_Morph : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_morph τ1 τ2) (type_morph τ1' τ2'))
|
||||
|
||||
| TSubst_Ladder : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_ladder τ1 τ2) (type_ladder τ1' τ2'))
|
||||
.
|
||||
*)
|
||||
|
||||
Lemma type_subst_symm :
|
||||
forall x y τ τ',
|
||||
((type_subst x (type_var y) τ) = τ') ->
|
||||
((type_subst y (type_var x) τ') = τ)
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
|
||||
unfold type_subst.
|
||||
induction τ.
|
||||
reflexivity.
|
||||
|
||||
|
||||
Admitted.
|
||||
|
||||
Lemma type_subst_fresh :
|
||||
forall α τ u,
|
||||
~ (In α (type_fv τ))
|
||||
-> (type_subst α u τ) = τ
|
||||
.
|
||||
Proof.
|
||||
intros.
|
||||
unfold type_subst.
|
||||
induction τ.
|
||||
reflexivity.
|
||||
|
||||
|
||||
unfold eqb.
|
||||
|
||||
admit.
|
||||
(*
|
||||
apply TSubst_Id.
|
||||
apply TSubst_VarKeep.
|
||||
contradict H.
|
||||
rewrite H.
|
||||
apply TFree_Var.
|
||||
|
||||
apply TSubst_Fun.
|
||||
apply IHτ1.
|
||||
|
||||
contradict H.
|
||||
apply TFree_Fun.
|
||||
apply H.
|
||||
apply
|
||||
*)
|
||||
Admitted.
|
||||
|
||||
|
||||
(* scoped variable substitution, replaces free occurences of v with n in expression e *)
|
||||
Fixpoint expr_subst (v:string) (n:expr_term) (e0:expr_term) :=
|
||||
match e0 with
|
||||
| expr_var name => if (eqb v name) then n else e0
|
||||
| expr_ty_abs x e => if (eqb v x) then e0 else expr_ty_abs x (expr_subst v n e)
|
||||
| expr_ty_app e t => expr_ty_app (expr_subst v n e) t
|
||||
| expr_abs x t e => if (eqb v x) then e0 else expr_abs x t (expr_subst v n e)
|
||||
| expr_morph x t e => if (eqb v x) then e0 else expr_morph x t (expr_subst v n e)
|
||||
| expr_app e a => expr_app (expr_subst v n e) (expr_subst v n a)
|
||||
| expr_let x a e => expr_let x (expr_subst v n a) (expr_subst v n e)
|
||||
| expr_ascend t e => expr_ascend t (expr_subst v n e)
|
||||
| expr_descend t e => expr_descend t (expr_subst v n e)
|
||||
end.
|
||||
|
||||
(* replace only type variables in expression *)
|
||||
Fixpoint expr_specialize (v:string) (n:type_term) (e0:expr_term) :=
|
||||
match e0 with
|
||||
| expr_ty_app e t => expr_ty_app (expr_specialize v n e) (type_subst v n t)
|
||||
| expr_ascend t e => expr_ascend (type_subst v n t) (expr_specialize v n e)
|
||||
| expr_descend t e => expr_descend (type_subst v n t) (expr_specialize v n e)
|
||||
| e => e
|
||||
end.
|
|
@ -1,94 +0,0 @@
|
|||
(*
|
||||
* This module defines the subtype relationship
|
||||
*
|
||||
* We distinguish between *representational* subtypes,
|
||||
* where any high-level type is a subtype of its underlying
|
||||
* representation type and *convertible* subtypes that
|
||||
* are compatible at high level, but have a different representation
|
||||
* that requires a conversion.
|
||||
*)
|
||||
|
||||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import equiv.
|
||||
|
||||
(** Subtyping *)
|
||||
|
||||
Reserved Notation "s ':<=' t" (at level 50).
|
||||
Reserved Notation "s '~<=' t" (at level 50).
|
||||
|
||||
(* Representational Subtype *)
|
||||
Inductive is_repr_subtype : type_term -> type_term -> Prop :=
|
||||
| TSubRepr_Refl : forall t t', (t === t') -> (t :<= t')
|
||||
| TSubRepr_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
|
||||
| TSubRepr_Ladder : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y)
|
||||
where "s ':<=' t" := (is_repr_subtype s t).
|
||||
|
||||
(* Convertible Subtype *)
|
||||
Inductive is_conv_subtype : type_term -> type_term -> Prop :=
|
||||
| TSubConv_Refl : forall t t', (t === t') -> (t ~<= t')
|
||||
| TSubConv_Trans : forall x y z, (x ~<= y) -> (y ~<= z) -> (x ~<= z)
|
||||
| TSubConv_Ladder : forall x' x y, (x ~<= y) -> ((type_ladder x' x) ~<= y)
|
||||
| TSubConv_Morph : forall x y y', (type_ladder x y) ~<= (type_ladder x y')
|
||||
where "s '~<=' t" := (is_conv_subtype s t).
|
||||
|
||||
|
||||
(* Every Representational Subtype is a Convertible Subtype *)
|
||||
|
||||
Lemma syn_sub_is_sem_sub : forall x y, (x :<= y) -> (x ~<= y).
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
apply TSubConv_Refl.
|
||||
apply H.
|
||||
apply TSubConv_Trans with (x:=x) (y:=y) (z:=z).
|
||||
apply IHis_repr_subtype1.
|
||||
apply IHis_repr_subtype2.
|
||||
apply TSubConv_Ladder.
|
||||
apply IHis_repr_subtype.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
(* EXAMPLES *)
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Example sub0 :
|
||||
[<
|
||||
< $"Seq"$ < $"Digit"$ $"10"$ > >
|
||||
~ < $"Seq"$ $"Char"$ >
|
||||
>]
|
||||
:<=
|
||||
[<
|
||||
< $"Seq"$ $"Char"$ >
|
||||
>]
|
||||
.
|
||||
Proof.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
Qed.
|
||||
|
||||
|
||||
Example sub1 :
|
||||
[< < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > >]
|
||||
:<= [< < $"Seq"$ $"Char"$ > >]
|
||||
.
|
||||
Proof.
|
||||
set [< < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > >].
|
||||
set [< < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > >].
|
||||
set [< < $"Seq"$ $"Char"$ > >].
|
||||
set (t0 === t).
|
||||
set (t :<= t0).
|
||||
set (t :<= t1).
|
||||
apply TSubRepr_Trans with t.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Distribute.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
Qed.
|
|
@ -1,4 +1,4 @@
|
|||
Require Import terms_debruijn.
|
||||
Require Import debruijn.
|
||||
|
||||
Local Open Scope ladder_type_scope.
|
||||
Local Open Scope ladder_expr_scope.
|
|
@ -1,11 +1,11 @@
|
|||
From Coq Require Import Lists.List.
|
||||
Import ListNotations.
|
||||
Require Import Atom.
|
||||
Require Import terms_debruijn.
|
||||
Require Import subtype_debruijn.
|
||||
Require Import context_debruijn.
|
||||
Require Import morph_debruijn.
|
||||
Require Import typing_debruijn.
|
||||
Require Import debruijn.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
Require Import morph.
|
||||
Require Import typing.
|
||||
|
||||
Open Scope ladder_expr_scope.
|
||||
|
383
coq/typing.v
383
coq/typing.v
|
@ -1,383 +0,0 @@
|
|||
(* This module defines the typing relation
|
||||
* where each expression is assigned a type.
|
||||
*)
|
||||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
Require Import morph.
|
||||
|
||||
(** Typing Derivation *)
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0).
|
||||
|
||||
Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
||||
| T_Var : forall Γ x τ,
|
||||
context_contains Γ x τ ->
|
||||
Γ |- [{ %x% }] \is τ
|
||||
|
||||
| T_Let : forall Γ s σ t τ x,
|
||||
Γ |- s \is σ ->
|
||||
(ctx_assign x σ Γ) |- t \is τ ->
|
||||
Γ |- [{ let x := s in t }] \is τ
|
||||
|
||||
| T_TypeAbs : forall Γ e τ α,
|
||||
Γ |- e \is τ ->
|
||||
Γ |- [{ Λ α ↦ e }] \is [< ∀α,τ >]
|
||||
|
||||
| T_TypeApp : forall Γ α e σ τ,
|
||||
Γ |- e \is [< ∀α, τ >] ->
|
||||
Γ |- [{ e # σ }] \is (type_subst α σ τ)
|
||||
|
||||
| T_Abs : forall Γ x σ t τ,
|
||||
(ctx_assign x σ Γ) |- t \is τ ->
|
||||
Γ |- [{ λ x , σ ↦ t }] \is [< σ -> τ >]
|
||||
|
||||
| T_MorphAbs : forall Γ x σ t τ,
|
||||
(ctx_assign x σ Γ) |- t \is τ ->
|
||||
Γ |- [{ λ x , σ ↦morph t }] \is [< σ ->morph τ >]
|
||||
|
||||
| T_App : forall Γ f a σ' σ τ,
|
||||
(Γ |- f \is [< σ -> τ >]) ->
|
||||
(Γ |- a \is σ') ->
|
||||
(Γ |- σ' ~> σ) ->
|
||||
(Γ |- [{ (f a) }] \is τ)
|
||||
|
||||
| T_MorphFun : forall Γ f σ τ,
|
||||
Γ |- f \is (type_morph σ τ) ->
|
||||
Γ |- f \is (type_fun σ τ)
|
||||
|
||||
| T_Ascend : forall Γ e τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
(Γ |- [{ e as τ' }] \is [< τ' ~ τ >])
|
||||
|
||||
| T_DescendImplicit : forall Γ x τ τ',
|
||||
Γ |- x \is τ ->
|
||||
(τ :<= τ') ->
|
||||
Γ |- x \is τ'
|
||||
|
||||
| T_Descend : forall Γ x τ τ',
|
||||
Γ |- x \is τ ->
|
||||
(τ :<= τ') ->
|
||||
Γ |- [{ x des τ' }] \is τ'
|
||||
|
||||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
Definition is_well_typed (e:expr_term) : Prop :=
|
||||
forall Γ,
|
||||
exists τ,
|
||||
Γ |- e \is τ
|
||||
.
|
||||
|
||||
Inductive translate_typing : context -> expr_term -> type_term -> expr_term -> Prop :=
|
||||
| Expand_Var : forall Γ x τ,
|
||||
(Γ |- (expr_var x) \is τ) ->
|
||||
(translate_typing Γ [{ %x% }] τ [{ %x% }])
|
||||
|
||||
| Expand_Let : forall Γ x e e' t t' σ τ,
|
||||
(Γ |- e \is σ) ->
|
||||
((ctx_assign x σ Γ) |- t \is τ) ->
|
||||
(translate_typing Γ e σ e') ->
|
||||
(translate_typing (ctx_assign x σ Γ) t τ t') ->
|
||||
(translate_typing Γ
|
||||
[{ let x := e in t }]
|
||||
τ
|
||||
[{ let x := e' in t' }])
|
||||
|
||||
| Expand_TypeAbs : forall Γ α e e' τ,
|
||||
(Γ |- e \is τ) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(translate_typing Γ
|
||||
[{ Λ α ↦ e }]
|
||||
[< ∀ α,τ >]
|
||||
[{ Λ α ↦ e' }])
|
||||
|
||||
| Expand_TypeApp : forall Γ e e' σ α τ,
|
||||
(Γ |- e \is (type_univ α τ)) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(translate_typing Γ
|
||||
[{ e # σ }]
|
||||
(type_subst α σ τ)
|
||||
[{ e' # σ }])
|
||||
|
||||
| Expand_Abs : forall Γ x σ e e' τ,
|
||||
((ctx_assign x σ Γ) |- e \is τ) ->
|
||||
(Γ |- (expr_abs x σ e) \is (type_fun σ τ)) ->
|
||||
(translate_typing (ctx_assign x σ Γ) e τ e') ->
|
||||
(translate_typing Γ
|
||||
[{ λ x , σ ↦ e }]
|
||||
[< σ -> τ >]
|
||||
[{ λ x , σ ↦ e' }])
|
||||
|
||||
| Expand_MorphAbs : forall Γ x σ e e' τ,
|
||||
((ctx_assign x σ Γ) |- e \is τ) ->
|
||||
(Γ |- (expr_abs x σ e) \is (type_fun σ τ)) ->
|
||||
(translate_typing (ctx_assign x σ Γ) e τ e') ->
|
||||
(translate_typing Γ
|
||||
[{ λ x , σ ↦morph e }]
|
||||
[< σ ->morph τ >]
|
||||
[{ λ x , σ ↦morph e' }])
|
||||
|
||||
| Expand_App : forall Γ f f' a a' m σ τ σ',
|
||||
(Γ |- f \is (type_fun σ τ)) ->
|
||||
(Γ |- a \is σ') ->
|
||||
(Γ |- σ' ~> σ) ->
|
||||
(translate_typing Γ f [< σ -> τ >] f') ->
|
||||
(translate_typing Γ a σ' a') ->
|
||||
(translate_morphism_path Γ σ' σ m) ->
|
||||
(translate_typing Γ [{ f a }] τ [{ f' (m a') }])
|
||||
|
||||
| Expand_MorphFun : forall Γ f f' σ τ,
|
||||
(Γ |- f \is (type_morph σ τ)) ->
|
||||
(Γ |- f \is (type_fun σ τ)) ->
|
||||
(translate_typing Γ f [< σ ->morph τ >] f') ->
|
||||
(translate_typing Γ f [< σ -> τ >] f')
|
||||
|
||||
| Expand_Ascend : forall Γ e e' τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
(Γ |- [{ e as τ' }] \is [< τ' ~ τ >]) ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(translate_typing Γ [{ e as τ' }] [< τ' ~ τ >] [{ e' as τ' }])
|
||||
|
||||
| Expand_Descend : forall Γ e e' τ τ',
|
||||
(Γ |- e \is τ) ->
|
||||
(τ :<= τ') ->
|
||||
(Γ |- [{ e des τ' }] \is τ') ->
|
||||
(translate_typing Γ e τ e') ->
|
||||
(translate_typing Γ e τ' [{ e' des τ' }])
|
||||
.
|
||||
|
||||
(* Examples *)
|
||||
|
||||
Example typing1 :
|
||||
ctx_empty |- [{ Λ"T" ↦ λ "x",%"T"% ↦ %"x"% }] \is [< ∀"T", %"T"% -> %"T"% >].
|
||||
Proof.
|
||||
intros.
|
||||
apply T_TypeAbs.
|
||||
apply T_Abs.
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
Qed.
|
||||
|
||||
Example typing2 :
|
||||
ctx_empty |- [{ Λ"T" ↦ λ "x",%"T"% ↦ %"x"% }] \is [< ∀"U", %"U"% -> %"U"% >].
|
||||
Proof.
|
||||
intros.
|
||||
apply T_DescendImplicit with (τ:=[< ∀"T",(%"T"% -> %"T"%) >]).
|
||||
apply T_TypeAbs.
|
||||
apply T_Abs.
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
Qed.
|
||||
|
||||
Example typing3 :
|
||||
ctx_empty |- [{
|
||||
Λ"T" ↦ Λ"U" ↦ λ"x",%"T"% ↦ λ"y",%"U"% ↦ %"y"%
|
||||
}] \is [<
|
||||
∀"S",∀"T",(%"S"%->%"T"%->%"T"%)
|
||||
>].
|
||||
Proof.
|
||||
intros.
|
||||
apply T_DescendImplicit with (τ:=[< ∀"T",∀"U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) >]).
|
||||
apply T_TypeAbs, T_TypeAbs, T_Abs.
|
||||
apply T_Abs.
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Trans with (y:= [< ∀"S",∀"U",(%"S"%->%"U"%->%"U"%) >] ).
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_SubUniv.
|
||||
apply TAlpha_Rename.
|
||||
Qed.
|
||||
|
||||
Example typing4 : (is_well_typed
|
||||
[{ Λ"T" ↦ Λ"U" ↦ λ"x",%"T"% ↦ λ"y",%"U"% ↦ %"x"% }]
|
||||
).
|
||||
Proof.
|
||||
unfold is_well_typed.
|
||||
exists [< ∀"T",∀"U",%"T"%->%"U"%->%"T"% >].
|
||||
apply T_TypeAbs.
|
||||
apply T_TypeAbs.
|
||||
apply T_Abs.
|
||||
apply T_Abs.
|
||||
apply T_Var.
|
||||
apply C_shuffle, C_take.
|
||||
Qed.
|
||||
|
||||
Example typing5 :
|
||||
(ctx_assign "60" [< $"ℝ"$ >]
|
||||
(ctx_assign "360" [< $"ℝ"$ >]
|
||||
(ctx_assign "/" [< $"ℝ"$ -> $"ℝ"$ -> $"ℝ"$ >]
|
||||
ctx_empty)))
|
||||
|-
|
||||
[{
|
||||
let "deg2turns" :=
|
||||
(λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$))
|
||||
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
|
||||
}]
|
||||
\is
|
||||
[<
|
||||
$"Angle"$~$"Turns"$~$"ℝ"$
|
||||
>]
|
||||
.
|
||||
Proof.
|
||||
apply T_Let with (σ:=[< $"Angle"$~$"Degrees"$~$"ℝ"$ ->morph $"Angle"$~$"Turns"$~$"ℝ"$ >]).
|
||||
apply T_MorphAbs.
|
||||
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Turns"$>] [<$"ℝ"$>])).
|
||||
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
|
||||
apply T_Ascend with (τ:=[<$"ℝ"$>]) (τ':=[<$"Angle"$~$"Turns"$>]).
|
||||
apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]).
|
||||
apply T_App with (σ := [< $"ℝ"$ >]) (σ' := [< $"ℝ"$ >]).
|
||||
apply T_Var.
|
||||
apply C_shuffle. apply C_shuffle. apply C_shuffle. apply C_take.
|
||||
apply T_DescendImplicit with (τ := [< $"Angle"$~$"Degrees"$~$"ℝ"$ >]).
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply TSubRepr_Ladder. apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl. apply TEq_Refl.
|
||||
apply M_Sub.
|
||||
apply TSubRepr_Refl. apply TEq_Refl.
|
||||
apply T_Var.
|
||||
apply C_shuffle, C_shuffle, C_take.
|
||||
apply M_Sub.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
apply T_App with (σ:=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]) (σ':=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]).
|
||||
apply T_MorphFun.
|
||||
apply T_Var.
|
||||
apply C_take.
|
||||
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Degrees"$>] [<$"ℝ"$>])).
|
||||
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
|
||||
apply T_Ascend.
|
||||
apply T_Var.
|
||||
apply C_shuffle. apply C_take.
|
||||
apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl.
|
||||
Qed.
|
||||
|
||||
|
||||
Ltac var_typing := auto using T_Var, C_shuffle, C_take.
|
||||
Ltac repr_subtype := auto using TSubRepr_Ladder, TSubRepr_Refl, TEq_Refl, TEq_LadderAssocLR.
|
||||
|
||||
Example expand1 :
|
||||
(translate_typing
|
||||
(ctx_assign "60" [< $"ℝ"$ >]
|
||||
(ctx_assign "360" [< $"ℝ"$ >]
|
||||
(ctx_assign "/" [< $"ℝ"$ -> $"ℝ"$ -> $"ℝ"$ >]
|
||||
ctx_empty)))
|
||||
[{
|
||||
let "deg2turns" :=
|
||||
(λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph ((%"/"% (%"x"% des $"ℝ"$) %"360"%) as $"Angle"$~$"Turns"$)) in
|
||||
let "sin" := (λ"α",$"Angle"$~$"Turns"$~$"ℝ"$ ↦ (%"α"% des $"ℝ"$)) in
|
||||
( %"sin"% (%"60"% as $"Angle"$~$"Degrees"$) )
|
||||
}]
|
||||
[<
|
||||
$"ℝ"$
|
||||
>]
|
||||
[{
|
||||
let "deg2turns" :=
|
||||
(λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||||
↦morph ((%"/"% (%"x"% des $"ℝ"$) %"360"%) as $"Angle"$~$"Turns"$)) in
|
||||
let "sin" := (λ"α",$"Angle"$~$"Turns"$~$"ℝ"$ ↦ (%"α"% des $"ℝ"$)) in
|
||||
(%"sin"% (%"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$)))
|
||||
}])
|
||||
.
|
||||
Proof.
|
||||
apply Expand_Let with (σ:=[< ($"Angle"$~$"Degrees"$)~$"ℝ"$ ->morph ($"Angle"$~$"Turns"$)~$"ℝ"$ >]).
|
||||
|
||||
- apply T_DescendImplicit with (τ:=[< $"Angle"$~$"Degrees"$~$"ℝ"$ ->morph $"Angle"$~$"Turns"$ ~ $"ℝ"$ >]).
|
||||
2: {
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_SubMorph.
|
||||
apply TEq_LadderAssocRL.
|
||||
apply TEq_LadderAssocRL.
|
||||
}
|
||||
apply T_MorphAbs.
|
||||
apply T_DescendImplicit with (τ:=[< ($"Angle"$~$"Turns"$) ~ $"ℝ"$ >]).
|
||||
2: {
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_LadderAssocLR.
|
||||
}
|
||||
apply T_Ascend with (τ:=[<$"ℝ"$>]) (τ':=[<$"Angle"$~$"Turns"$>]).
|
||||
apply T_App with (σ':=[<$"ℝ"$>]) (σ:=[<$"ℝ"$>]).
|
||||
apply T_App with (σ':=[<$"ℝ"$>]) (σ:=[<$"ℝ"$>]).
|
||||
var_typing.
|
||||
var_typing.
|
||||
apply T_Descend with (τ:=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]).
|
||||
repr_subtype.
|
||||
var_typing.
|
||||
repr_subtype.
|
||||
apply id_morphism_path.
|
||||
var_typing.
|
||||
apply id_morphism_path.
|
||||
|
||||
- apply T_Let with (σ:=[< $"Angle"$~$"Turns"$~$"ℝ"$ -> $"ℝ"$ >]).
|
||||
apply T_Abs.
|
||||
* apply T_Descend with (τ:=[<$"Angle"$~$"Turns"$~$"ℝ"$>]).
|
||||
2: repr_subtype.
|
||||
var_typing.
|
||||
|
||||
* apply T_App with (σ':=[<($"Angle"$~$"Degrees"$)~$"ℝ"$>]) (σ:=[<($"Angle"$~$"Turns"$)~$"ℝ"$>]) (τ:=[<$"ℝ"$>]).
|
||||
apply T_DescendImplicit with (τ:=[< $"Angle"$~$"Turns"$~$"ℝ"$ -> $"ℝ"$ >]).
|
||||
2: {
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_SubFun.
|
||||
apply TEq_LadderAssocRL.
|
||||
apply TEq_Refl.
|
||||
}
|
||||
var_typing.
|
||||
|
||||
apply T_Ascend with (τ':=[<$"Angle"$~$"Degrees"$>]) (τ:=[<$"ℝ"$>]).
|
||||
var_typing.
|
||||
|
||||
apply M_Single with (h:="deg2turns"%string).
|
||||
var_typing.
|
||||
|
||||
- admit.
|
||||
(*
|
||||
- apply Expand_MorphAbs.
|
||||
* apply T_DescendImplicit with (τ:=[< ($"Angle"$~$"Turns"$) ~ $"ℝ"$ >]).
|
||||
2: repr_subtype.
|
||||
apply T_Ascend with (τ':=[<$"Angle"$~$"Turns"$>]) (τ:=[<$"ℝ"$>]).
|
||||
apply T_App with (σ:=[<$"ℝ"$>]) (σ':=[<$"ℝ"$>]).
|
||||
apply T_App with (σ:=[<$"ℝ"$>]) (σ':=[<$"ℝ"$>]).
|
||||
auto using T_Var, C_shuffle, C_take.
|
||||
apply T_Descend with (τ:=[<$"Angle"$~$"Degrees"$~$"ℝ"$>]).
|
||||
2: repr_subtype.
|
||||
var_typing.
|
||||
apply id_morphism_path.
|
||||
var_typing.
|
||||
apply id_morphism_path.
|
||||
|
||||
* apply T_Abs.
|
||||
apply T_DescendImplicit with (τ:=[< ($"Angle"$~$"Turns"$) ~ $"ℝ"$ >]).
|
||||
2: repr_subtype.
|
||||
apply T_Ascend with (τ':=[<$"Angle"$~$"Turns"$>]) (τ:=[<$"ℝ"$>]).
|
||||
apply T_App with (σ':=[<$"ℝ"$>]) (σ:=[<$"ℝ"$>]).
|
||||
apply T_App with (σ':=[<$"ℝ"$>]) (σ:=[<$"ℝ"$>]).
|
||||
var_typing.
|
||||
apply T_Descend with [<$"Angle"$~$"Degrees"$~$"ℝ"$>].
|
||||
2: repr_subtype.
|
||||
var_typing.
|
||||
apply id_morphism_path.
|
||||
var_typing.
|
||||
apply id_morphism_path.
|
||||
|
||||
* apply Expand_Ascend.
|
||||
*)
|
||||
- admit.
|
||||
Admitted.
|
|
@ -1,4 +1,4 @@
|
|||
Require Import Atom.
|
||||
Require Import terms_debruijn.
|
||||
Require Import debruijn.
|
||||
|
||||
Definition context : Type := (list (atom * type_DeBruijn)).
|
|
@ -1,7 +1,7 @@
|
|||
Require Import terms_debruijn.
|
||||
Require Import equiv_debruijn.
|
||||
Require Import subtype_debruijn.
|
||||
Require Import context_debruijn.
|
||||
Require Import debruijn.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
Require Import Atom.
|
||||
Import AtomImpl.
|
||||
From Coq Require Import Lists.List.
|
|
@ -8,8 +8,8 @@
|
|||
* that requires a conversion.
|
||||
*)
|
||||
|
||||
Require Import terms_debruijn.
|
||||
Require Import equiv_debruijn.
|
||||
Require Import debruijn.
|
||||
Require Import equiv.
|
||||
|
||||
(** Subtyping *)
|
||||
|
|
@ -2,10 +2,10 @@ From Coq Require Import Lists.List.
|
|||
Import ListNotations.
|
||||
Require Import Metatheory.
|
||||
Require Import Atom.
|
||||
Require Import terms_debruijn.
|
||||
Require Import subtype_debruijn.
|
||||
Require Import context_debruijn.
|
||||
Require Import morph_debruijn.
|
||||
Require Import debruijn.
|
||||
Require Import subtype.
|
||||
Require Import context.
|
||||
Require Import morph.
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Open Scope ladder_expr_scope.
|
Loading…
Reference in a new issue