Compare commits
3 commits
42ae93f2d7
...
61f1234fcc
Author | SHA1 | Date | |
---|---|---|---|
61f1234fcc | |||
361d03c117 | |||
0caf3ff514 |
4 changed files with 266 additions and 46 deletions
89
coq/equiv.v
89
coq/equiv.v
|
@ -29,6 +29,7 @@
|
|||
* rewrite-step of each other, `===` is symmetric and thus `===`
|
||||
* satisfies all properties required of an equivalence relation.
|
||||
*)
|
||||
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
From Coq Require Import Strings.String.
|
||||
|
@ -41,17 +42,55 @@ Module Equiv.
|
|||
|
||||
(** Alpha conversion in types *)
|
||||
|
||||
Reserved Notation "S '-->α' T" (at level 40).
|
||||
Reserved Notation "S '--->α' T" (at level 40).
|
||||
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
||||
| TEq_Alpha : forall x y t,
|
||||
(type_univ x t) -->α (type_univ y (type_subst x (type_var y) t))
|
||||
where "S '-->α' T" := (type_conv_alpha S T).
|
||||
| TAlpha_Rename : forall x y t t',
|
||||
|
||||
(type_subst1 x (type_var y) t t') ->
|
||||
(type_univ x t) --->α (type_univ y t')
|
||||
|
||||
| TAlpha_SubUniv : forall x τ τ',
|
||||
(τ --->α τ') ->
|
||||
(type_univ x τ) --->α (type_univ x τ')
|
||||
|
||||
| TAlpha_SubSpec1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
(type_spec τ1 τ2) --->α (type_spec τ1' τ2)
|
||||
|
||||
| TAlpha_SubSpec2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
(type_spec τ1 τ2) --->α (type_spec τ1 τ2')
|
||||
|
||||
| TAlpha_SubFun1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
(type_fun τ1 τ2) --->α (type_fun τ1' τ2)
|
||||
|
||||
| TAlpha_SubFun2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
(type_fun τ1 τ2) --->α (type_fun τ1 τ2')
|
||||
|
||||
| TAlpha_SubMorph1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
(type_morph τ1 τ2) --->α (type_morph τ1' τ2)
|
||||
|
||||
| TAlpha_SubMorph2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
(type_morph τ1 τ2) --->α (type_morph τ1 τ2')
|
||||
|
||||
| TAlpha_SubLadder1 : forall τ1 τ1' τ2,
|
||||
(τ1 --->α τ1') ->
|
||||
(type_ladder τ1 τ2) --->α (type_ladder τ1' τ2)
|
||||
|
||||
| TAlpha_SubLadder2 : forall τ1 τ2 τ2',
|
||||
(τ2 --->α τ2') ->
|
||||
(type_ladder τ1 τ2) --->α (type_ladder τ1 τ2')
|
||||
|
||||
where "S '--->α' T" := (type_conv_alpha S T).
|
||||
|
||||
(** Alpha conversion is symmetric *)
|
||||
|
||||
Lemma type_alpha_symm :
|
||||
forall σ τ,
|
||||
(σ -->α τ) -> (τ -->α σ).
|
||||
(σ --->α τ) -> (τ --->α σ).
|
||||
Proof.
|
||||
(* TODO *)
|
||||
Admitted.
|
||||
|
@ -179,8 +218,8 @@ Inductive type_eq : type_term -> type_term -> Prop :=
|
|||
y === z ->
|
||||
x === z
|
||||
|
||||
| TEq_Rename : forall x y,
|
||||
x -->α y ->
|
||||
| TEq_Alpha : forall x y,
|
||||
x --->α y ->
|
||||
x === y
|
||||
|
||||
| TEq_Distribute : forall x y,
|
||||
|
@ -196,7 +235,7 @@ where "S '===' T" := (type_eq S T).
|
|||
|
||||
|
||||
(** Symmetry of === *)
|
||||
Lemma type_eq_is_symmetric :
|
||||
Lemma TEq_Symm :
|
||||
forall x y,
|
||||
(x === y) -> (y === x).
|
||||
Proof.
|
||||
|
@ -210,7 +249,7 @@ Proof.
|
|||
apply IHtype_eq1.
|
||||
|
||||
apply type_alpha_symm in H.
|
||||
apply TEq_Rename.
|
||||
apply TEq_Alpha.
|
||||
apply H.
|
||||
|
||||
apply TEq_Condense.
|
||||
|
@ -224,9 +263,7 @@ Qed.
|
|||
|
||||
(** "flat" types do not contain ladders $\label{coq:type-flat}$ *)
|
||||
Inductive type_is_flat : type_term -> Prop :=
|
||||
| FlatUnit : (type_is_flat type_unit)
|
||||
| FlatVar : forall x, (type_is_flat (type_var x))
|
||||
| FlatNum : forall x, (type_is_flat (type_num x))
|
||||
| FlatId : forall x, (type_is_flat (type_id x))
|
||||
| FlatApp : forall x y,
|
||||
(type_is_flat x) ->
|
||||
|
@ -270,18 +307,21 @@ Proof.
|
|||
intros τ H.
|
||||
induction τ.
|
||||
|
||||
left.
|
||||
apply FlatUnit.
|
||||
|
||||
left.
|
||||
apply FlatId.
|
||||
|
||||
left.
|
||||
apply FlatVar.
|
||||
|
||||
(*
|
||||
left.
|
||||
apply FlatNum.
|
||||
apply IHτ1 in H.
|
||||
apply FlatFun.
|
||||
apply H.
|
||||
destruct H.
|
||||
destruct H.
|
||||
|
||||
apply IHτ1.
|
||||
*)
|
||||
admit.
|
||||
admit.
|
||||
admit.
|
||||
|
@ -295,22 +335,11 @@ Proof.
|
|||
intros.
|
||||
destruct t.
|
||||
|
||||
exists type_unit.
|
||||
split. apply TEq_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
|
||||
exists (type_id s).
|
||||
split. apply TEq_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
admit.
|
||||
|
||||
exists (type_num n).
|
||||
split. apply TEq_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
|
||||
admit.
|
||||
|
||||
exists (type_univ s t).
|
||||
|
@ -342,11 +371,11 @@ Admitted.
|
|||
*)
|
||||
|
||||
Example example_flat_type :
|
||||
(type_is_flat (type_spec (type_id "PosInt") (type_num 10))).
|
||||
(type_is_flat (type_spec (type_id "PosInt") (type_id "10"))).
|
||||
Proof.
|
||||
apply FlatApp.
|
||||
apply FlatId.
|
||||
apply FlatNum.
|
||||
apply FlatId.
|
||||
Qed.
|
||||
|
||||
Example example_lnf_type :
|
||||
|
|
91
coq/subst.v
91
coq/subst.v
|
@ -4,6 +4,59 @@ Require Import terms.
|
|||
Include Terms.
|
||||
|
||||
Module Subst.
|
||||
|
||||
(* Type Variable "x" is a free variable in type *)
|
||||
Inductive type_var_free (x:string) : type_term -> Prop :=
|
||||
| TFree_Var :
|
||||
(type_var_free x (type_var x))
|
||||
|
||||
| TFree_Ladder : forall τ1 τ2,
|
||||
(type_var_free x τ1) ->
|
||||
(type_var_free x τ2) ->
|
||||
(type_var_free x (type_ladder τ1 τ2))
|
||||
|
||||
| TFree_Fun : forall τ1 τ2,
|
||||
(type_var_free x τ1) ->
|
||||
(type_var_free x τ2) ->
|
||||
(type_var_free x (type_fun τ1 τ2))
|
||||
|
||||
| TFree_Morph : forall τ1 τ2,
|
||||
(type_var_free x τ1) ->
|
||||
(type_var_free x τ2) ->
|
||||
(type_var_free x (type_morph τ1 τ2))
|
||||
|
||||
| TFree_Spec : forall τ1 τ2,
|
||||
(type_var_free x τ1) ->
|
||||
(type_var_free x τ2) ->
|
||||
(type_var_free x (type_spec τ1 τ2))
|
||||
|
||||
| TFree_Univ : forall y τ,
|
||||
~(y = x) ->
|
||||
(type_var_free x τ) ->
|
||||
(type_var_free x (type_univ y τ))
|
||||
.
|
||||
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Example ex_type_free_var1 :
|
||||
(type_var_free "T" (type_univ "U" (type_var "T")))
|
||||
.
|
||||
Proof.
|
||||
apply TFree_Univ.
|
||||
easy.
|
||||
apply TFree_Var.
|
||||
Qed.
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Example ex_type_free_var2 :
|
||||
~(type_var_free "T" (type_univ "T" (type_var "T")))
|
||||
.
|
||||
Proof.
|
||||
intro H.
|
||||
inversion H.
|
||||
contradiction.
|
||||
Qed.
|
||||
|
||||
(* scoped variable substitution in type terms $\label{coq:subst-type}$ *)
|
||||
Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) :=
|
||||
match t0 with
|
||||
|
@ -15,6 +68,44 @@ Fixpoint type_subst (v:string) (n:type_term) (t0:type_term) :=
|
|||
| t => t
|
||||
end.
|
||||
|
||||
Inductive type_subst1 (x:string) (σ:type_term) : type_term -> type_term -> Prop :=
|
||||
| TSubst_VarReplace :
|
||||
(type_subst1 x σ (type_var x) σ)
|
||||
|
||||
| TSubst_VarKeep : forall y,
|
||||
~(x = y) ->
|
||||
(type_subst1 x σ (type_var y) (type_var y))
|
||||
|
||||
| TSubst_UnivReplace : forall y τ τ',
|
||||
~(x = y) ->
|
||||
~(type_var_free y σ) ->
|
||||
(type_subst1 x σ τ τ') ->
|
||||
(type_subst1 x σ (type_univ y τ) (type_univ y τ'))
|
||||
|
||||
| TSubst_Id : forall n,
|
||||
(type_subst1 x σ (type_id n) (type_id n))
|
||||
|
||||
| TSubst_Spec : forall τ1 τ2 τ1' τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_spec τ1 τ2) (type_spec τ1' τ2'))
|
||||
|
||||
| TSubst_Fun : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_fun τ1 τ2) (type_fun τ1' τ2'))
|
||||
|
||||
| TSubst_Morph : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_morph τ1 τ2) (type_morph τ1' τ2'))
|
||||
|
||||
| TSubst_Ladder : forall τ1 τ1' τ2 τ2',
|
||||
(type_subst1 x σ τ1 τ1') ->
|
||||
(type_subst1 x σ τ2 τ2') ->
|
||||
(type_subst1 x σ (type_ladder τ1 τ2) (type_ladder τ1' τ2'))
|
||||
.
|
||||
|
||||
(* scoped variable substitution, replaces free occurences of v with n in expression e *)
|
||||
Fixpoint expr_subst (v:string) (n:expr_term) (e0:expr_term) :=
|
||||
match e0 with
|
||||
|
|
|
@ -8,10 +8,8 @@ Module Terms.
|
|||
|
||||
(* types *)
|
||||
Inductive type_term : Type :=
|
||||
| type_unit : type_term
|
||||
| type_id : string -> type_term
|
||||
| type_var : string -> type_term
|
||||
| type_num : nat -> type_term
|
||||
| type_fun : type_term -> type_term -> type_term
|
||||
| type_univ : string -> type_term -> type_term
|
||||
| type_spec : type_term -> type_term -> type_term
|
||||
|
|
122
coq/typing.v
122
coq/typing.v
|
@ -4,11 +4,18 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Require Import subtype.
|
||||
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
Include Equiv.
|
||||
Include Subtype.
|
||||
|
||||
Module Typing.
|
||||
|
||||
(** Typing Derivation *)
|
||||
|
||||
Inductive context : Type :=
|
||||
| ctx_assign : string -> type_term -> context -> context
|
||||
| ctx_empty : context
|
||||
|
@ -52,22 +59,68 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
Γ |- a \is σ ->
|
||||
Γ |- (expr_tm_app f a) \is τ
|
||||
|
||||
| T_Sub : forall Γ x τ τ',
|
||||
Γ |- x \is τ ->
|
||||
(τ :<= τ') ->
|
||||
Γ |- x \is τ'
|
||||
|
||||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
|
||||
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
|
||||
| T_CompatVar : forall Γ x τ,
|
||||
(context_contains Γ x τ) ->
|
||||
(Γ |- (expr_var x) \compatible τ)
|
||||
|
||||
| T_Compatible : forall Γ x τ,
|
||||
(Γ |- x \is τ) ->
|
||||
(Γ |- x \compatible τ)
|
||||
| T_CompatLet : forall Γ s (σ:type_term) t τ x,
|
||||
(Γ |- s \compatible σ) ->
|
||||
(Γ |- t \compatible τ) ->
|
||||
(Γ |- (expr_let x σ s t) \compatible τ)
|
||||
|
||||
| T_CompatTypeAbs : forall Γ (e:expr_term) (τ:type_term) α,
|
||||
Γ |- e \compatible τ ->
|
||||
Γ |- (expr_ty_abs α e) \compatible (type_univ α τ)
|
||||
|
||||
| T_CompatTypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
|
||||
Γ |- e \compatible (type_univ α τ) ->
|
||||
Γ |- (expr_ty_app e σ) \compatible (type_subst α σ τ)
|
||||
|
||||
| T_CompatMorphAbs : forall Γ x t τ τ',
|
||||
Γ |- t \compatible τ ->
|
||||
(τ ~<= τ') ->
|
||||
Γ |- (expr_tm_abs_morph x τ t) \compatible (type_morph τ τ')
|
||||
|
||||
| T_CompatAbs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term),
|
||||
(context_contains Γ x σ) ->
|
||||
Γ |- t \compatible τ ->
|
||||
Γ |- (expr_tm_abs x σ t) \compatible (type_fun σ τ)
|
||||
|
||||
| T_CompatApp : forall Γ f a σ τ,
|
||||
(Γ |- f \compatible (type_fun σ τ)) ->
|
||||
(Γ |- a \compatible σ) ->
|
||||
(Γ |- (expr_tm_app f a) \compatible τ)
|
||||
|
||||
| T_CompatImplicitCast : forall Γ h x τ τ',
|
||||
(context_contains Γ h (type_morph τ τ')) ->
|
||||
(Γ |- x \compatible τ) ->
|
||||
(Γ |- x \compatible τ')
|
||||
|
||||
| T_CompatSub : forall Γ x τ τ',
|
||||
(Γ |- x \compatible τ) ->
|
||||
(τ ~<= τ') ->
|
||||
(Γ |- x \compatible τ')
|
||||
|
||||
where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ).
|
||||
|
||||
|
||||
(* Examples *)
|
||||
|
||||
|
||||
Example typing1 :
|
||||
forall Γ,
|
||||
(context_contains Γ "x" (type_var "T")) ->
|
||||
Γ |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
|
||||
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% ]] \is [ ∀"T", %"T"% -> %"T"% ].
|
||||
(* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *)
|
||||
Proof.
|
||||
intros.
|
||||
apply T_TypeAbs.
|
||||
|
@ -75,15 +128,64 @@ Proof.
|
|||
apply H.
|
||||
apply T_Var.
|
||||
apply H.
|
||||
Admitted.
|
||||
Qed.
|
||||
|
||||
Example typing2 :
|
||||
ctx_empty |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
|
||||
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
|
||||
forall Γ,
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ λ "x" %"T"% ↦ %"x"% ]] \is [ ∀"U", %"U"% -> %"U"% ].
|
||||
(* Γ |- [ ΛT ↦ λx:T ↦ x ] : ∀T.(T->T) *)
|
||||
Proof.
|
||||
intros.
|
||||
apply T_Sub with (τ:=[∀"T",(%"T"% -> %"T"%)]).
|
||||
apply T_TypeAbs.
|
||||
apply T_Abs.
|
||||
apply H.
|
||||
apply T_Var.
|
||||
apply H.
|
||||
|
||||
Admitted.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_VarReplace.
|
||||
Qed.
|
||||
|
||||
Example typing3 :
|
||||
forall Γ,
|
||||
(context_contains Γ "x" [ %"T"% ]) ->
|
||||
(context_contains Γ "y" [ %"U"% ]) ->
|
||||
Γ |- [[ Λ"T" ↦ Λ"U" ↦ λ"x" %"T"% ↦ λ"y" %"U"% ↦ %"y"% ]] \is [ ∀"S",∀"T",(%"S"%->%"T"%->%"T"%) ].
|
||||
Proof.
|
||||
intros.
|
||||
apply T_Sub with (τ:=[∀"T",∀"U",(%"T"%->%"U"%->%"U"%)]) (τ':=[∀"S",∀"T",(%"S"%->%"T"%->%"T"%)]).
|
||||
apply T_TypeAbs, T_TypeAbs, T_Abs.
|
||||
apply H.
|
||||
apply T_Abs.
|
||||
apply H0.
|
||||
apply T_Var, H0.
|
||||
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Trans with (y:= [∀"S",∀"U",(%"S"%->%"U"%->%"U"%)] ).
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_UnivReplace. discriminate.
|
||||
easy.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
|
||||
apply TEq_Alpha.
|
||||
apply TAlpha_SubUniv.
|
||||
apply TAlpha_Rename.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarKeep. discriminate.
|
||||
apply TSubst_Fun.
|
||||
apply TSubst_VarReplace.
|
||||
apply TSubst_VarReplace.
|
||||
Qed.
|
||||
|
||||
End Typing.
|
||||
|
|
Loading…
Reference in a new issue