Compare commits
1 commit
42ae93f2d7
...
bab13389d2
Author | SHA1 | Date | |
---|---|---|---|
bab13389d2 |
6 changed files with 143 additions and 195 deletions
|
@ -2,7 +2,6 @@
|
|||
terms.v
|
||||
equiv.v
|
||||
subst.v
|
||||
subtype.v
|
||||
typing.v
|
||||
smallstep.v
|
||||
bbencode.v
|
||||
|
|
114
coq/equiv.v
114
coq/equiv.v
|
@ -30,43 +30,18 @@
|
|||
* satisfies all properties required of an equivalence relation.
|
||||
*)
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
From Coq Require Import Strings.String.
|
||||
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
|
||||
Module Equiv.
|
||||
|
||||
|
||||
(** Alpha conversion in types *)
|
||||
|
||||
Reserved Notation "S '-->α' T" (at level 40).
|
||||
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
||||
| TEq_Alpha : forall x y t,
|
||||
(type_univ x t) -->α (type_univ y (type_subst x (type_var y) t))
|
||||
where "S '-->α' T" := (type_conv_alpha S T).
|
||||
|
||||
(** Alpha conversion is symmetric *)
|
||||
|
||||
Lemma type_alpha_symm :
|
||||
forall σ τ,
|
||||
(σ -->α τ) -> (τ -->α σ).
|
||||
Proof.
|
||||
(* TODO *)
|
||||
Admitted.
|
||||
|
||||
|
||||
(** Define all rewrite steps $\label{coq:type-dist}$ *)
|
||||
|
||||
Reserved Notation "S '-->distribute-ladder' T" (at level 40).
|
||||
Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
||||
| L_DistributeOverSpec1 : forall x x' y,
|
||||
(type_spec (type_ladder x x') y)
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_spec x y) (type_spec x' y))
|
||||
|
||||
| L_DistributeOverSpec2 : forall x y y',
|
||||
| L_DistributeOverApp : forall x y y',
|
||||
(type_spec x (type_ladder y y'))
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_spec x y) (type_spec x y'))
|
||||
|
@ -81,28 +56,13 @@ Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
|||
-->distribute-ladder
|
||||
(type_ladder (type_fun x y) (type_fun x y'))
|
||||
|
||||
| L_DistributeOverMorph1 : forall x x' y,
|
||||
(type_morph (type_ladder x x') y)
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_morph x y) (type_morph x' y))
|
||||
|
||||
| L_DistributeOverMorph2 : forall x y y',
|
||||
(type_morph x (type_ladder y y'))
|
||||
-->distribute-ladder
|
||||
(type_ladder (type_morph x y) (type_morph x y'))
|
||||
|
||||
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
||||
|
||||
|
||||
|
||||
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
||||
Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
||||
| L_CondenseOverSpec1 : forall x x' y,
|
||||
(type_ladder (type_spec x y) (type_spec x' y))
|
||||
-->condense-ladder
|
||||
(type_spec (type_ladder x x') y)
|
||||
|
||||
| L_CondenseOverSpec2 : forall x y y',
|
||||
| L_CondenseOverApp : forall x y y',
|
||||
(type_ladder (type_spec x y) (type_spec x y'))
|
||||
-->condense-ladder
|
||||
(type_spec x (type_ladder y y'))
|
||||
|
@ -117,16 +77,6 @@ Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
|||
-->condense-ladder
|
||||
(type_fun x (type_ladder y y'))
|
||||
|
||||
| L_CondenseOverMorph1 : forall x x' y,
|
||||
(type_ladder (type_morph x y) (type_morph x' y))
|
||||
-->condense-ladder
|
||||
(type_morph (type_ladder x x') y)
|
||||
|
||||
| L_CondenseOverMorph2 : forall x y y',
|
||||
(type_ladder (type_morph x y) (type_morph x y'))
|
||||
-->condense-ladder
|
||||
(type_morph x (type_ladder y y'))
|
||||
|
||||
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
||||
|
||||
|
||||
|
@ -140,12 +90,9 @@ Lemma distribute_inverse :
|
|||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_CondenseOverSpec1.
|
||||
apply L_CondenseOverSpec2.
|
||||
apply L_CondenseOverApp.
|
||||
apply L_CondenseOverFun1.
|
||||
apply L_CondenseOverFun2.
|
||||
apply L_CondenseOverMorph1.
|
||||
apply L_CondenseOverMorph2.
|
||||
Qed.
|
||||
|
||||
(** Inversion Lemma:
|
||||
|
@ -158,12 +105,9 @@ Lemma condense_inverse :
|
|||
Proof.
|
||||
intros.
|
||||
destruct H.
|
||||
apply L_DistributeOverSpec1.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply L_DistributeOverApp.
|
||||
apply L_DistributeOverFun1.
|
||||
apply L_DistributeOverFun2.
|
||||
apply L_DistributeOverMorph1.
|
||||
apply L_DistributeOverMorph2.
|
||||
Qed.
|
||||
|
||||
|
||||
|
@ -171,23 +115,19 @@ Qed.
|
|||
|
||||
Reserved Notation " S '===' T " (at level 40).
|
||||
Inductive type_eq : type_term -> type_term -> Prop :=
|
||||
| TEq_Refl : forall x,
|
||||
| L_Refl : forall x,
|
||||
x === x
|
||||
|
||||
| TEq_Trans : forall x y z,
|
||||
| L_Trans : forall x y z,
|
||||
x === y ->
|
||||
y === z ->
|
||||
x === z
|
||||
|
||||
| TEq_Rename : forall x y,
|
||||
x -->α y ->
|
||||
x === y
|
||||
|
||||
| TEq_Distribute : forall x y,
|
||||
| L_Distribute : forall x y,
|
||||
x -->distribute-ladder y ->
|
||||
x === y
|
||||
|
||||
| TEq_Condense : forall x y,
|
||||
| L_Condense : forall x y,
|
||||
x -->condense-ladder y ->
|
||||
x === y
|
||||
|
||||
|
@ -203,23 +143,24 @@ Proof.
|
|||
intros.
|
||||
induction H.
|
||||
|
||||
apply TEq_Refl.
|
||||
1:{
|
||||
apply L_Refl.
|
||||
}
|
||||
|
||||
apply TEq_Trans with (y:=y).
|
||||
apply IHtype_eq2.
|
||||
apply IHtype_eq1.
|
||||
|
||||
apply type_alpha_symm in H.
|
||||
apply TEq_Rename.
|
||||
apply H.
|
||||
|
||||
apply TEq_Condense.
|
||||
2:{
|
||||
apply L_Condense.
|
||||
apply distribute_inverse.
|
||||
apply H.
|
||||
|
||||
apply TEq_Distribute.
|
||||
}
|
||||
2:{
|
||||
apply L_Distribute.
|
||||
apply condense_inverse.
|
||||
apply H.
|
||||
}
|
||||
|
||||
apply L_Trans with (y:=y).
|
||||
apply IHtype_eq2.
|
||||
apply IHtype_eq1.
|
||||
Qed.
|
||||
|
||||
(** "flat" types do not contain ladders $\label{coq:type-flat}$ *)
|
||||
|
@ -296,26 +237,25 @@ Proof.
|
|||
destruct t.
|
||||
|
||||
exists type_unit.
|
||||
split. apply TEq_Refl.
|
||||
split. apply L_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
|
||||
exists (type_id s).
|
||||
split. apply TEq_Refl.
|
||||
split. apply L_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
admit.
|
||||
|
||||
exists (type_num n).
|
||||
split. apply TEq_Refl.
|
||||
split. apply L_Refl.
|
||||
apply LNF.
|
||||
admit.
|
||||
|
||||
admit.
|
||||
|
||||
exists (type_univ s t).
|
||||
split.
|
||||
apply TEq_Refl.
|
||||
split. apply L_Refl.
|
||||
apply LNF.
|
||||
|
||||
Admitted.
|
||||
|
@ -362,8 +302,8 @@ Example example_type_eq :
|
|||
(type_ladder (type_spec (type_id "Seq") (type_id "Char"))
|
||||
(type_spec (type_id "Seq") (type_id "Byte"))).
|
||||
Proof.
|
||||
apply TEq_Distribute.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply L_Distribute.
|
||||
apply L_DistributeOverApp.
|
||||
Qed.
|
||||
|
||||
|
||||
|
|
|
@ -9,10 +9,22 @@ Include Typing.
|
|||
|
||||
Module Smallstep.
|
||||
|
||||
Reserved Notation " s '-->α' t " (at level 40).
|
||||
Reserved Notation " s '-->β' t " (at level 40).
|
||||
Reserved Notation " s '-->δ' t " (at level 40).
|
||||
Reserved Notation " s '-->eval' t " (at level 40).
|
||||
|
||||
Inductive alpha_step : expr_term -> expr_term -> Prop :=
|
||||
| E_Rename : forall x x' e,
|
||||
(expr_tm_abs x e) -->α (expr_tm_abs x' (expr_subst x (type_var x'))
|
||||
where "s '-->α' t" := (alpha_step s t).
|
||||
|
||||
|
||||
Example a1 : polymorphic_identity1 -->α polymorphic_identity2.
|
||||
Proof.
|
||||
Qed.
|
||||
|
||||
|
||||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||||
| E_App1 : forall e1 e1' e2,
|
||||
e1 -->β e1' ->
|
||||
|
|
|
@ -1,96 +0,0 @@
|
|||
(*
|
||||
* This module defines the subtype relationship
|
||||
*
|
||||
* We distinguish between *representational* subtypes,
|
||||
* where any high-level type is a subtype of its underlying
|
||||
* representation type and *convertible* subtypes that
|
||||
* are compatible at high level, but have a different representation
|
||||
* that requires a conversion.
|
||||
*)
|
||||
|
||||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import equiv.
|
||||
Include Terms.
|
||||
Include Equiv.
|
||||
|
||||
Module Subtype.
|
||||
|
||||
(** Subtyping *)
|
||||
|
||||
Reserved Notation "s ':<=' t" (at level 50).
|
||||
Reserved Notation "s '~<=' t" (at level 50).
|
||||
|
||||
(* Representational Subtype *)
|
||||
Inductive is_repr_subtype : type_term -> type_term -> Prop :=
|
||||
| TSubRepr_Refl : forall t t', (t === t') -> (t :<= t')
|
||||
| TSubRepr_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
|
||||
| TSubRepr_Ladder : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y)
|
||||
where "s ':<=' t" := (is_repr_subtype s t).
|
||||
|
||||
(* Convertible Subtype *)
|
||||
Inductive is_conv_subtype : type_term -> type_term -> Prop :=
|
||||
| TSubConv_Refl : forall t t', (t === t') -> (t ~<= t')
|
||||
| TSubConv_Trans : forall x y z, (x ~<= y) -> (y ~<= z) -> (x ~<= z)
|
||||
| TSubConv_Ladder : forall x' x y, (x ~<= y) -> ((type_ladder x' x) ~<= y)
|
||||
| TSubConv_Morph : forall x y y', (type_ladder x y) ~<= (type_ladder x y')
|
||||
where "s '~<=' t" := (is_conv_subtype s t).
|
||||
|
||||
|
||||
(* Every Representational Subtype is a Convertible Subtype *)
|
||||
|
||||
Lemma syn_sub_is_sem_sub : forall x y, (x :<= y) -> (x ~<= y).
|
||||
Proof.
|
||||
intros.
|
||||
induction H.
|
||||
apply TSubConv_Refl.
|
||||
apply H.
|
||||
apply TSubConv_Trans with (x:=x) (y:=y) (z:=z).
|
||||
apply IHis_repr_subtype1.
|
||||
apply IHis_repr_subtype2.
|
||||
apply TSubConv_Ladder.
|
||||
apply IHis_repr_subtype.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
(* EXAMPLES *)
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
Open Scope ladder_expr_scope.
|
||||
|
||||
Example sub0 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > >
|
||||
~ < $"Seq"$ $"Char"$ > ]
|
||||
:<=
|
||||
[ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
Qed.
|
||||
|
||||
|
||||
Example sub1 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ]
|
||||
:<= [ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ].
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ].
|
||||
set [ < $"Seq"$ $"Char"$ > ].
|
||||
set (t0 === t).
|
||||
set (t :<= t0).
|
||||
set (t :<= t1).
|
||||
apply TSubRepr_Trans with t.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Distribute.
|
||||
apply L_DistributeOverSpec2.
|
||||
apply TSubRepr_Ladder.
|
||||
apply TSubRepr_Refl.
|
||||
apply TEq_Refl.
|
||||
Qed.
|
||||
|
||||
End Subtype.
|
61
coq/typing.v
61
coq/typing.v
|
@ -4,11 +4,66 @@
|
|||
From Coq Require Import Strings.String.
|
||||
Require Import terms.
|
||||
Require Import subst.
|
||||
Require Import equiv.
|
||||
Include Terms.
|
||||
Include Subst.
|
||||
Include Equiv.
|
||||
|
||||
Module Typing.
|
||||
|
||||
|
||||
(** Subtyping *)
|
||||
|
||||
Reserved Notation "s ':<=' t" (at level 50).
|
||||
Reserved Notation "s '~=~' t" (at level 50).
|
||||
|
||||
Inductive is_syntactic_subtype : type_term -> type_term -> Prop :=
|
||||
| S_Refl : forall t t', (t === t') -> (t :<= t')
|
||||
| S_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
|
||||
| S_SynRepr : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y)
|
||||
where "s ':<=' t" := (is_syntactic_subtype s t).
|
||||
|
||||
Inductive is_semantic_subtype : type_term -> type_term -> Prop :=
|
||||
| S_Synt : forall x y,
|
||||
(x :<= y) -> (x ~=~ y)
|
||||
|
||||
| S_SemRepr : forall x y y',
|
||||
(type_ladder x y) ~=~ (type_ladder x y')
|
||||
where "s '~=~' t" := (is_semantic_subtype s t).
|
||||
|
||||
|
||||
Open Scope ladder_type_scope.
|
||||
|
||||
Example sub0 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > >
|
||||
~ < $"Seq"$ $"Char"$ > ]
|
||||
:<=
|
||||
[ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
apply S_SynRepr.
|
||||
apply S_Refl.
|
||||
apply L_Refl.
|
||||
Qed.
|
||||
|
||||
Example sub1 :
|
||||
[ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ]
|
||||
:<= [ < $"Seq"$ $"Char"$ > ]
|
||||
.
|
||||
Proof.
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ].
|
||||
set [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ].
|
||||
set [ < $"Seq"$ $"Char"$ > ].
|
||||
set (t0 === t).
|
||||
set (t :<= t0).
|
||||
set (t :<= t2).
|
||||
apply S_Trans with t1.
|
||||
apply S_Refl.
|
||||
Qed.
|
||||
|
||||
|
||||
(** Typing Derivation *)
|
||||
|
||||
Inductive context : Type :=
|
||||
| ctx_assign : string -> type_term -> context -> context
|
||||
| ctx_empty : context
|
||||
|
@ -17,7 +72,8 @@ Inductive context : Type :=
|
|||
Inductive context_contains : context -> string -> type_term -> Prop :=
|
||||
| C_take : forall (x:string) (X:type_term) (Γ:context),
|
||||
(context_contains (ctx_assign x X Γ) x X)
|
||||
| C_shuffle : forall x X y Y Γ,
|
||||
|
||||
| C_shuffle : forall x X y Y (Γ:context),
|
||||
(context_contains Γ x X) ->
|
||||
(context_contains (ctx_assign y Y Γ) x X).
|
||||
|
||||
|
@ -27,7 +83,7 @@ Reserved Notation "Gamma '|-' x '\compatible' X" (at level 101, x at next level
|
|||
Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
||||
| T_Var : forall Γ x τ,
|
||||
(context_contains Γ x τ) ->
|
||||
(Γ |- (expr_var x) \is τ)
|
||||
(Γ |- x \is τ)
|
||||
|
||||
| T_Let : forall Γ s (σ:type_term) t τ x,
|
||||
(Γ |- s \is σ) ->
|
||||
|
@ -55,6 +111,7 @@ Inductive expr_type : context -> expr_term -> type_term -> Prop :=
|
|||
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
|
||||
|
||||
|
||||
|
||||
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
|
||||
|
||||
| T_Compatible : forall Γ x τ,
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
\usepackage{mathpartir}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{url}
|
||||
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage{minted}
|
||||
\usemintedstyle{tango}
|
||||
|
||||
|
@ -52,11 +52,25 @@
|
|||
|
||||
|
||||
\begin{abstract}
|
||||
This paper presents a minimal core calculus extending the \(\lambda\)-calculus by a polymorphic type-system similar to SystemF, but in addition it introduces a new type-constructor called the \emph{ladder-type}.
|
||||
Using ladder-types, multi-layered embeddings of higher-level data-types into lower-level data-types can be described by a type-level structure.
|
||||
By facilitating automatic transformations between semantically compatible datatypes, ladder-typing opens up a new paradigm of abstraction.
|
||||
We formally define the syntax \& semantics of this calculus and prove its \emph{type soundness}.
|
||||
Further we show how the Boehm-Berarducci encoding can be used to implement algebraic datatypes on the basis of the introduced core calculus.
|
||||
This work explores the idea of \emph{representational polymorphism}
|
||||
to treat the coexistence of multiple equivalent representational forms for a single abstract concept.
|
||||
|
||||
|
||||
interchangeability
|
||||
%Our goal is a type system to support the seamless integration of
|
||||
%which may arise by consequence of external interfaces or internal optimization.
|
||||
|
||||
For the study of its formalism, we extend the \emph{polymorphic lambda-calculus} by a new type-constructor,
|
||||
called the \emph{ladder-type} in order to encode a \emph{represented-as} relationship into our type-terms.
|
||||
Based on this extended type-structure, we first define a subtyping relation to capture
|
||||
a notion of structural embedding of higher-level types into lower-level types
|
||||
which is then relaxed into \emph{semantic subtyping},
|
||||
where for a certain expected type, an equivalent representation implementing the same abstract type
|
||||
is accepted as well. In that case, a coercion is inserted implicitly to transform the underlying datastructure
|
||||
while keeping all semantical properties of the type intact.
|
||||
We specify our typing-rules accordingly, give an algorithm that manifests all implicit coercions in a program
|
||||
and prove its \emph{soundness}.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
\maketitle
|
||||
|
@ -64,6 +78,29 @@ Further we show how the Boehm-Berarducci encoding can be used to implement algeb
|
|||
|
||||
|
||||
%\newpage
|
||||
\section{Introduction}
|
||||
While certain representational forms might be fixed already at the boundaries of an application,
|
||||
internally, some other representations might be desired for reasons of simplicity and efficiency.
|
||||
Further, differing complexity-profiles of certain representations might even have the potential to complement
|
||||
each other and coexist in a single application.
|
||||
Often however, implementations become heavily dependent on concrete data formats
|
||||
and require technical knowledge of the low-level data structures.
|
||||
Making use of multiple such representations additionally requires careful transformation of data.
|
||||
|
||||
\todo{serialization}
|
||||
\todo{memory layout optimizations}
|
||||
\todo{difference to traditional coercions (static cast)}
|
||||
\todo{relation with inheritance based subtyping: bottom-up vs top-down inheritance vs ladder-types}
|
||||
|
||||
\todo{related work: type specific languages}
|
||||
|
||||
In order to facilitate programming at "high-level", we introduce a type-system that is able to disambiguate
|
||||
this multiplicity of representations and facilitate implicit coercions between them.
|
||||
We claim this to aid in (1) forgetting details about representational details during program composition
|
||||
and (2) keeping the system flexible enough to introduce representational optimizations at a later stage without
|
||||
compromising semantic correctness.
|
||||
|
||||
|
||||
\section{Core Calculus}
|
||||
\subsection{Syntax}
|
||||
|
||||
|
@ -301,7 +338,6 @@ Coq definition is at \hyperref[coq:subst-type]{subst.v:\ref{coq:subst-type}}.
|
|||
|
||||
|
||||
\begin{definition}[Substitution in Expressions]
|
||||
\todo{complete}
|
||||
Given an expression-variable assignment \(\psi_e = \{ \metavariable{x_1} \mapsto \metavariable{t_1}, \quad \metavariable{x_2} \mapsto \metavariable{t_2}, \quad \dots \}\),
|
||||
the thereby induced substitution \(\overline{\psi_e}\) replaces all \emph{free} occurences of the expression variables \(\metavariable{x_i}\)
|
||||
in an expression \(e \in \nonterm{E} \) with the \(\psi_e(\metavariable{x_i})\)
|
||||
|
|
Loading…
Reference in a new issue