423 lines
9.7 KiB
Coq
423 lines
9.7 KiB
Coq
(* This module defines an equivalence relation
|
||
* on type-terms.
|
||
*
|
||
* In general, we want distributivity of ladders
|
||
* over all other type constructors, e.g. type-
|
||
* specializations or function-types.
|
||
*
|
||
* Formally, we define two rewrite rules that
|
||
* shall define how we are able to rewrite type-terms
|
||
* such that they remain equivalent.
|
||
*
|
||
* (1) `-->distribute-ladder` which distributes
|
||
* ladder types over other type constructors, e.g.
|
||
* <S T~U> -->distribute-ladder <S T> ~ <S U>.
|
||
*
|
||
* (2) `-->condense-ladder` which does the
|
||
* inverse operation, e.g.
|
||
* <S T> ~ <S U> -->condense-ladder <S T~U>
|
||
*
|
||
* When applied exhaustively, each rewrite rule yields
|
||
* a normal form, namely *Ladder Normal Form (LNF)*, which
|
||
* is reached by exhaustive application of `-->distribute-ladder`,
|
||
* and *Parameter Normal Form (PNF)*, which is reached by exhaustive
|
||
* application of `-->condense-ladder`.
|
||
*
|
||
* The equivalence relation `===` over type-terms is then defined
|
||
* as the reflexive and transitive hull over `-->distribute-ladder`
|
||
* and `-->condense-ladder`. Since the latter two are the inverse
|
||
* rewrite-step of each other, `===` is symmetric and thus `===`
|
||
* satisfies all properties required of an equivalence relation.
|
||
*)
|
||
|
||
Require Import terms.
|
||
Require Import subst.
|
||
From Coq Require Import Strings.String.
|
||
|
||
(** Alpha conversion in types *)
|
||
|
||
Reserved Notation "S '--->α' T" (at level 40).
|
||
Inductive type_conv_alpha : type_term -> type_term -> Prop :=
|
||
| TAlpha_Rename : forall x y t,
|
||
(type_univ x t) --->α (type_univ y (type_subst x (type_var y) t))
|
||
|
||
| TAlpha_SubUniv : forall x τ τ',
|
||
(τ --->α τ') ->
|
||
[< ∀x,τ >] --->α [< ∀x,τ' >]
|
||
|
||
| TAlpha_SubSpec1 : forall τ1 τ1' τ2,
|
||
(τ1 --->α τ1') ->
|
||
[< <τ1 τ2> >] --->α [< <τ1' τ2> >]
|
||
|
||
| TAlpha_SubSpec2 : forall τ1 τ2 τ2',
|
||
(τ2 --->α τ2') ->
|
||
[< <τ1 τ2> >] --->α [< <τ1 τ2'> >]
|
||
|
||
| TAlpha_SubFun1 : forall τ1 τ1' τ2,
|
||
(τ1 --->α τ1') ->
|
||
[< τ1 -> τ2 >] --->α [< τ1' -> τ2 >]
|
||
|
||
| TAlpha_SubFun2 : forall τ1 τ2 τ2',
|
||
(τ2 --->α τ2') ->
|
||
[< τ1 -> τ2 >] --->α [< τ1 -> τ2' >]
|
||
|
||
| TAlpha_SubMorph1 : forall τ1 τ1' τ2,
|
||
(τ1 --->α τ1') ->
|
||
[< τ1 ->morph τ2 >] --->α [< τ1' ->morph τ2 >]
|
||
|
||
| TAlpha_SubMorph2 : forall τ1 τ2 τ2',
|
||
(τ2 --->α τ2') ->
|
||
[< τ1 ->morph τ2 >] --->α [< τ1 ->morph τ2' >]
|
||
|
||
| TAlpha_SubLadder1 : forall τ1 τ1' τ2,
|
||
(τ1 --->α τ1') ->
|
||
[< τ1 ~ τ2 >] --->α [< τ1' ~ τ2 >]
|
||
|
||
| TAlpha_SubLadder2 : forall τ1 τ2 τ2',
|
||
(τ2 --->α τ2') ->
|
||
[< τ1 ~ τ2 >] --->α [< τ1 ~ τ2' >]
|
||
|
||
where "S '--->α' T" := (type_conv_alpha S T).
|
||
|
||
(** Alpha conversion is symmetric *)
|
||
Lemma type_alpha_symm :
|
||
forall σ τ,
|
||
(σ --->α τ) -> (τ --->α σ).
|
||
Proof.
|
||
intros.
|
||
induction H.
|
||
- admit.
|
||
- auto using TAlpha_Rename,type_subst,type_subst_symm, TAlpha_SubUniv.
|
||
- auto using TAlpha_SubSpec1.
|
||
- auto using TAlpha_SubSpec2.
|
||
- auto using TAlpha_SubFun1.
|
||
- auto using TAlpha_SubFun2.
|
||
- auto using TAlpha_SubMorph1.
|
||
- auto using TAlpha_SubMorph2.
|
||
- auto using TAlpha_SubLadder1.
|
||
- auto using TAlpha_SubLadder2.
|
||
Admitted.
|
||
|
||
(** Define all rewrite steps $\label{coq:type-dist}$ *)
|
||
|
||
Reserved Notation "S '-->distribute-ladder' T" (at level 40).
|
||
Inductive type_distribute_ladder : type_term -> type_term -> Prop :=
|
||
| L_DistributeOverSpec1 : forall x x' y,
|
||
[< <x~x' y> >]
|
||
-->distribute-ladder
|
||
[< <x y>~<x' y> >]
|
||
|
||
| L_DistributeOverSpec2 : forall x y y',
|
||
[< <x y~y'> >]
|
||
-->distribute-ladder
|
||
[< <x y>~<x y'> >]
|
||
|
||
| L_DistributeOverFun1 : forall x x' y,
|
||
[< (x~x' -> y) >]
|
||
-->distribute-ladder
|
||
[< (x -> y) ~ (x' -> y) >]
|
||
|
||
| L_DistributeOverFun2 : forall x y y',
|
||
[< (x -> y~y') >]
|
||
-->distribute-ladder
|
||
[< (x -> y) ~ (x -> y') >]
|
||
|
||
| L_DistributeOverMorph1 : forall x x' y,
|
||
[< (x~x' ->morph y) >]
|
||
-->distribute-ladder
|
||
[< (x ->morph y) ~ (x' ->morph y) >]
|
||
|
||
| L_DistributeOverMorph2 : forall x y y',
|
||
(type_morph x (type_ladder y y'))
|
||
-->distribute-ladder
|
||
(type_ladder (type_morph x y) (type_morph x y'))
|
||
|
||
where "S '-->distribute-ladder' T" := (type_distribute_ladder S T).
|
||
|
||
|
||
|
||
Reserved Notation "S '-->condense-ladder' T" (at level 40).
|
||
Inductive type_condense_ladder : type_term -> type_term -> Prop :=
|
||
| L_CondenseOverSpec1 : forall x x' y,
|
||
[< <x y>~<x' y> >]
|
||
-->condense-ladder
|
||
[< <x~x' y> >]
|
||
|
||
| L_CondenseOverSpec2 : forall x y y',
|
||
[< <x y>~<x y'> >]
|
||
-->condense-ladder
|
||
[< <x y~y'> >]
|
||
|
||
| L_CondenseOverFun1 : forall x x' y,
|
||
[< (x -> y) ~ (x' -> y) >]
|
||
-->condense-ladder
|
||
[< (x~x') -> y >]
|
||
|
||
| L_CondenseOverFun2 : forall x y y',
|
||
[< (x -> y) ~ (x -> y') >]
|
||
-->condense-ladder
|
||
[< (x -> y~y') >]
|
||
|
||
| L_CondenseOverMorph1 : forall x x' y,
|
||
[< (x ->morph y) ~ (x' ->morph y) >]
|
||
-->condense-ladder
|
||
[< (x~x' ->morph y) >]
|
||
|
||
| L_CondenseOverMorph2 : forall x y y',
|
||
[< (x ->morph y) ~ (x ->morph y') >]
|
||
-->condense-ladder
|
||
[< (x ->morph y~y') >]
|
||
|
||
where "S '-->condense-ladder' T" := (type_condense_ladder S T).
|
||
|
||
|
||
(** Inversion Lemma:
|
||
`-->distribute-ladder` is the inverse of `-->condense-ladder
|
||
*)
|
||
Lemma distribute_inverse :
|
||
forall x y,
|
||
x -->distribute-ladder y ->
|
||
y -->condense-ladder x.
|
||
Proof.
|
||
intros.
|
||
destruct H.
|
||
apply L_CondenseOverSpec1.
|
||
apply L_CondenseOverSpec2.
|
||
apply L_CondenseOverFun1.
|
||
apply L_CondenseOverFun2.
|
||
apply L_CondenseOverMorph1.
|
||
apply L_CondenseOverMorph2.
|
||
Qed.
|
||
|
||
(** Inversion Lemma:
|
||
`-->condense-ladder` is the inverse of `-->distribute-ladder`
|
||
*)
|
||
Lemma condense_inverse :
|
||
forall x y,
|
||
x -->condense-ladder y ->
|
||
y -->distribute-ladder x.
|
||
Proof.
|
||
intros.
|
||
destruct H.
|
||
apply L_DistributeOverSpec1.
|
||
apply L_DistributeOverSpec2.
|
||
apply L_DistributeOverFun1.
|
||
apply L_DistributeOverFun2.
|
||
apply L_DistributeOverMorph1.
|
||
apply L_DistributeOverMorph2.
|
||
Qed.
|
||
|
||
|
||
(** Define the equivalence relation as reflexive, transitive hull. $\label{coq:type-equiv}$ *)
|
||
|
||
Reserved Notation " S '===' T " (at level 40).
|
||
Inductive type_eq : type_term -> type_term -> Prop :=
|
||
| TEq_Refl : forall x,
|
||
x === x
|
||
|
||
| TEq_Trans : forall x y z,
|
||
x === y ->
|
||
y === z ->
|
||
x === z
|
||
|
||
| TEq_SubFun : forall x x' y y',
|
||
x === x' ->
|
||
y === y' ->
|
||
[< x -> y >] === [< x' -> y' >]
|
||
|
||
| TEq_SubMorph : forall x x' y y',
|
||
x === x' ->
|
||
y === y' ->
|
||
[< x ->morph y >] === [< x' ->morph y' >]
|
||
|
||
| TEq_LadderAssocLR : forall x y z,
|
||
[< (x~y)~z >]
|
||
===
|
||
[< x~(y~z) >]
|
||
|
||
| TEq_LadderAssocRL : forall x y z,
|
||
[< x~(y~z) >]
|
||
===
|
||
[< (x~y)~z >]
|
||
|
||
| TEq_Alpha : forall x y,
|
||
x --->α y ->
|
||
x === y
|
||
|
||
| TEq_Distribute : forall x y,
|
||
x -->distribute-ladder y ->
|
||
x === y
|
||
|
||
| TEq_Condense : forall x y,
|
||
x -->condense-ladder y ->
|
||
x === y
|
||
|
||
where "S '===' T" := (type_eq S T).
|
||
|
||
|
||
|
||
(** Symmetry of === *)
|
||
Lemma TEq_Symm :
|
||
forall x y,
|
||
(x === y) -> (y === x).
|
||
Proof.
|
||
intros.
|
||
induction H.
|
||
|
||
apply TEq_Refl.
|
||
|
||
apply TEq_Trans with (y:=y).
|
||
apply IHtype_eq2.
|
||
apply IHtype_eq1.
|
||
|
||
apply TEq_SubFun.
|
||
auto. auto.
|
||
apply TEq_SubMorph.
|
||
auto. auto.
|
||
apply TEq_LadderAssocRL.
|
||
apply TEq_LadderAssocLR.
|
||
|
||
apply type_alpha_symm in H.
|
||
apply TEq_Alpha.
|
||
apply H.
|
||
|
||
apply TEq_Condense.
|
||
apply distribute_inverse.
|
||
apply H.
|
||
|
||
apply TEq_Distribute.
|
||
apply condense_inverse.
|
||
apply H.
|
||
Qed.
|
||
|
||
(** "flat" types do not contain ladders $\label{coq:type-flat}$ *)
|
||
Inductive type_is_flat : type_term -> Prop :=
|
||
| FlatVar : forall x, (type_is_flat (type_var x))
|
||
| FlatId : forall x, (type_is_flat (type_id x))
|
||
| FlatApp : forall x y,
|
||
(type_is_flat x) ->
|
||
(type_is_flat y) ->
|
||
(type_is_flat (type_spec x y))
|
||
|
||
| FlatFun : forall x y,
|
||
(type_is_flat x) ->
|
||
(type_is_flat y) ->
|
||
(type_is_flat (type_fun x y))
|
||
|
||
| FlatSub : forall x v,
|
||
(type_is_flat x) ->
|
||
(type_is_flat (type_univ v x))
|
||
.
|
||
|
||
(** Ladder Normal Form:
|
||
exhaustive application of -->distribute-ladder
|
||
*)
|
||
Inductive type_is_lnf : type_term -> Prop :=
|
||
| LNF : forall x : type_term,
|
||
(not (exists y:type_term, x -->distribute-ladder y))
|
||
-> (type_is_lnf x)
|
||
.
|
||
|
||
(** Parameter Normal Form:
|
||
exhaustive application of -->condense-ladder
|
||
*)
|
||
Inductive type_is_pnf : type_term -> Prop :=
|
||
| PNF : forall x : type_term,
|
||
(not (exists y:type_term, x -->condense-ladder y))
|
||
-> (type_is_pnf x)
|
||
.
|
||
|
||
(** Any term in LNF either is flat, or is a ladder T1~T2 where T1 is flat and T2 is in LNF *)
|
||
Lemma lnf_shape :
|
||
forall τ:type_term,
|
||
(type_is_lnf τ) -> ((type_is_flat τ) \/ (exists τ1 τ2, τ = (type_ladder τ1 τ2) /\ (type_is_flat τ1) /\ (type_is_lnf τ2)))
|
||
.
|
||
Proof.
|
||
intros τ H.
|
||
induction τ.
|
||
|
||
left.
|
||
apply FlatId.
|
||
|
||
left.
|
||
apply FlatVar.
|
||
(*
|
||
left.
|
||
apply IHτ1 in H.
|
||
apply FlatFun.
|
||
apply H.
|
||
destruct H.
|
||
destruct H.
|
||
|
||
apply IHτ1.
|
||
*)
|
||
admit.
|
||
admit.
|
||
admit.
|
||
admit.
|
||
Admitted.
|
||
|
||
(** every type has an equivalent LNF *)
|
||
Lemma lnf_normalizing :
|
||
forall t, exists t', (t === t') /\ (type_is_lnf t').
|
||
Proof.
|
||
intros.
|
||
destruct t.
|
||
|
||
exists (type_id s).
|
||
split. apply TEq_Refl.
|
||
apply LNF.
|
||
admit.
|
||
admit.
|
||
admit.
|
||
|
||
exists (type_univ s t).
|
||
split.
|
||
apply TEq_Refl.
|
||
apply LNF.
|
||
|
||
Admitted.
|
||
|
||
(** every type has an equivalent PNF *)
|
||
Lemma pnf_normalizing :
|
||
forall t, exists t', (t === t') /\ (type_is_pnf t').
|
||
Proof.
|
||
Admitted.
|
||
|
||
Lemma lnf_uniqueness :
|
||
forall t t' t'',
|
||
(t === t') /\ (type_is_lnf t') /\ (t === t'') /\ (type_is_lnf t'')
|
||
-> t = t'.
|
||
Proof.
|
||
Admitted.
|
||
|
||
|
||
|
||
|
||
|
||
(**
|
||
* Examples
|
||
*)
|
||
|
||
Example example_flat_type :
|
||
type_is_flat [< <$"PosInt"$ $"10"$> >].
|
||
Proof.
|
||
apply FlatApp.
|
||
apply FlatId.
|
||
apply FlatId.
|
||
Qed.
|
||
|
||
Example example_lnf_type :
|
||
type_is_lnf [< [$"Char"$] ~ [$"Byte"$] >].
|
||
Proof.
|
||
Admitted.
|
||
|
||
Example example_type_eq :
|
||
[< [$"Char"$ ~ $"Byte"$] >]
|
||
===
|
||
[< [$"Char"$] ~ [$"Byte"$] >]
|
||
.
|
||
Proof.
|
||
apply TEq_Distribute.
|
||
apply L_DistributeOverSpec2.
|
||
Qed.
|