137 lines
3.8 KiB
Coq
137 lines
3.8 KiB
Coq
From Coq Require Import Strings.String.
|
||
Require Import terms.
|
||
Require Import subst.
|
||
Require Import subtype.
|
||
Require Import typing.
|
||
|
||
Reserved Notation " s '-->α' t " (at level 40).
|
||
Reserved Notation " s '-->β' t " (at level 40).
|
||
|
||
Inductive expr_alpha : expr_term -> expr_term -> Prop :=
|
||
| EAlpha_Rename : forall x x' τ e,
|
||
(expr_abs x τ e) -->α (expr_abs x' τ (expr_subst x (expr_var x') e))
|
||
|
||
| EAlpha_TyRename : forall α α' e,
|
||
(expr_ty_abs α e) -->α (expr_ty_abs α' (expr_specialize α (type_var α') e))
|
||
|
||
| EAlpha_SubAbs : forall x τ e e',
|
||
(e -->α e') ->
|
||
[{ λ x , τ ↦ e }] -->α [{ λ x , τ ↦ e' }]
|
||
|
||
| EAlpha_SubTyAbs : forall α e e',
|
||
(e -->α e') ->
|
||
[{ Λ α ↦ e }] -->α [{ Λ α ↦ e' }]
|
||
|
||
| EAlpha_SubApp1 : forall e1 e1' e2,
|
||
(e1 -->α e1') ->
|
||
[{ e1 e2 }] -->α [{ e1' e2 }]
|
||
|
||
| EAlpha_SubApp2 : forall e1 e2 e2',
|
||
(e2 -->α e2') ->
|
||
[{ e1 e2 }] -->α [{ e1 e2' }]
|
||
|
||
where "s '-->α' t" := (expr_alpha s t).
|
||
|
||
|
||
Example a1 : polymorphic_identity1 -->α polymorphic_identity2.
|
||
Proof.
|
||
unfold polymorphic_identity1.
|
||
unfold polymorphic_identity2.
|
||
apply EAlpha_SubTyAbs.
|
||
apply EAlpha_Rename.
|
||
Qed.
|
||
|
||
|
||
Inductive beta_step : expr_term -> expr_term -> Prop :=
|
||
| E_App1 : forall e1 e1' e2,
|
||
e1 -->β e1' ->
|
||
[{ e1 e2 }] -->β [{ e1' e2 }]
|
||
|
||
| E_App2 : forall v1 e2 e2',
|
||
(is_value v1) ->
|
||
e2 -->β e2' ->
|
||
[{ v1 e2 }] -->β [{ v1 e2' }]
|
||
|
||
| E_TypApp : forall e e' τ,
|
||
e -->β e' ->
|
||
[{ Λ τ ↦ e }] -->β [{ Λ τ ↦ e' }]
|
||
|
||
| E_TypAppLam : forall α e τ,
|
||
[{ (Λ α ↦ e) # τ }] -->β (expr_specialize α τ e)
|
||
|
||
| E_AppLam : forall x τ e a,
|
||
[{ (λ x , τ ↦ e) a }] -->β (expr_subst x a e)
|
||
|
||
| E_AppMorph : forall x τ e a,
|
||
[{ (λ x , τ ↦morph e) a }] -->β (expr_subst x a e)
|
||
|
||
| E_Let : forall x e a,
|
||
[{ let x := a in e }] -->β (expr_subst x a e)
|
||
|
||
| E_StripAscend : forall τ e,
|
||
[{ e as τ }] -->β e
|
||
|
||
| E_StripDescend : forall τ e,
|
||
[{ e des τ }] -->β e
|
||
|
||
| E_Ascend : forall τ e e',
|
||
(e -->β e') ->
|
||
[{ e as τ }] -->β [{ e' as τ }]
|
||
|
||
| E_AscendCollapse : forall τ' τ e,
|
||
[{ (e as τ) as τ' }] -->β [{ e as (τ'~τ) }]
|
||
|
||
| E_DescendCollapse : forall τ' τ e,
|
||
(τ':<=τ) ->
|
||
[{ (e des τ') des τ }] -->β [{ e des τ }]
|
||
|
||
where "s '-->β' t" := (beta_step s t).
|
||
|
||
Inductive multi {X : Type} (R : X -> X -> Prop) : X -> X -> Prop :=
|
||
| Multi_Refl : forall (x : X), multi R x x
|
||
| Multi_Step : forall (x y z : X),
|
||
R x y ->
|
||
multi R y z ->
|
||
multi R x z.
|
||
|
||
Notation " s -->α* t " := (multi expr_alpha s t) (at level 40).
|
||
Notation " s -->β* t " := (multi beta_step s t) (at level 40).
|
||
|
||
|
||
|
||
Example reduce1 :
|
||
[{
|
||
let "deg2turns" :=
|
||
(λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||
↦morph ((%"/"% (%"x"% des $"ℝ"$) %"360"%) as $"Angle"$~$"Turns"$))
|
||
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
|
||
}]
|
||
-->β*
|
||
[{
|
||
((%"/"% %"60"%) %"360"%) as $"Angle"$~$"Turns"$
|
||
}].
|
||
Proof.
|
||
apply Multi_Step with (y:=[{ (λ"x",$"Angle"$~$"Degrees"$~$"ℝ"$
|
||
↦morph (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$)) (%"60"% as $"Angle"$~$"Degrees"$) }]).
|
||
apply E_Let.
|
||
|
||
apply Multi_Step with (y:=(expr_subst "x" [{%"60"% as $"Angle"$~$"Degrees"$}] [{ (((%"/"% (%"x"% des $"ℝ"$)) %"360"%) as $"Angle"$~$"Turns"$) }])).
|
||
apply E_AppMorph.
|
||
simpl.
|
||
|
||
apply Multi_Step with (y:=[{ ((%"/"% (%"60"% as $"Angle"$~$"Degrees"$)) %"360"%) as $"Angle"$~$"Turns"$ }]).
|
||
apply E_Ascend.
|
||
apply E_App1.
|
||
apply E_App2.
|
||
apply V_Abs, VAbs_Var.
|
||
apply E_StripDescend.
|
||
|
||
apply Multi_Step with (y:=[{ (%"/"% %"60"% %"360"%) as $"Angle"$~$"Turns"$ }]).
|
||
apply E_Ascend.
|
||
apply E_App1.
|
||
apply E_App2.
|
||
apply V_Abs, VAbs_Var.
|
||
apply E_StripAscend.
|
||
|
||
apply Multi_Refl.
|
||
Qed.
|