lib-laddertypes/src/constraint_system.rs

810 lines
34 KiB
Rust
Raw Normal View History

use {
2025-05-01 06:10:30 +02:00
crate::{dict::*, term::TypeTerm, desugared_term::*, EnumVariant, StructMember, Substitution}, std::collections::HashMap
};
//<<<<>>>><<>><><<>><<<*>>><<>><><<>><<<<>>>>\\
#[derive(Clone, Eq, PartialEq, Debug)]
2025-05-01 06:10:30 +02:00
pub struct ConstraintError {
pub addr: Vec<usize>,
2025-05-01 06:10:30 +02:00
pub t1: TypeTerm,
pub t2: TypeTerm
}
#[derive(Clone)]
2025-05-01 06:10:30 +02:00
pub struct ConstraintPair {
pub addr: Vec<usize>,
pub lhs: TypeTerm,
pub rhs: TypeTerm,
}
2025-05-01 06:10:30 +02:00
impl ConstraintPair {
pub fn new(lhs: TypeTerm, rhs: TypeTerm) -> Self {
ConstraintPair {
lhs,rhs, addr:vec![]
}
}
}
2025-05-01 06:10:30 +02:00
pub struct ConstraintSystem {
σ: HashMap<TypeID, TypeTerm>,
upper_bounds: HashMap< u64, TypeTerm >,
lower_bounds: HashMap< u64, TypeTerm >,
2025-05-01 06:10:30 +02:00
equal_pairs: Vec<ConstraintPair>,
subtype_pairs: Vec<ConstraintPair>,
trait_pairs: Vec<ConstraintPair>,
parallel_pairs: Vec<ConstraintPair>
}
2025-05-01 06:10:30 +02:00
impl ConstraintSystem {
pub fn new(
2025-05-01 06:10:30 +02:00
equal_pairs: Vec<ConstraintPair>,
subtype_pairs: Vec<ConstraintPair>,
trait_pairs: Vec<ConstraintPair>,
parallel_pairs: Vec<ConstraintPair>
) -> Self {
2025-05-01 06:10:30 +02:00
ConstraintSystem {
σ: HashMap::new(),
equal_pairs,
subtype_pairs,
trait_pairs,
parallel_pairs,
upper_bounds: HashMap::new(),
lower_bounds: HashMap::new(),
}
}
2025-05-01 06:10:30 +02:00
pub fn new_eq(eqs: Vec<ConstraintPair>) -> Self {
ConstraintSystem::new( eqs, Vec::new(), Vec::new(), Vec::new() )
}
2025-05-01 06:10:30 +02:00
pub fn new_sub( subs: Vec<ConstraintPair>) -> Self {
ConstraintSystem::new( Vec::new(), subs, Vec::new(), Vec::new() )
}
2025-05-01 06:10:30 +02:00
pub fn new_trait(traits: Vec<ConstraintPair>) -> Self {
ConstraintSystem::new( Vec::new(), Vec::new(), traits, Vec::new() )
}
2025-05-01 06:10:30 +02:00
pub fn new_parallel( parallels: Vec<ConstraintPair>) -> Self {
ConstraintSystem::new(Vec::new(), Vec::new(), Vec::new(), parallels )
}
/// update all values in substitution
pub fn reapply_subst(&mut self) {
let mut new_σ = HashMap::new();
for (v, tt) in self.σ.iter() {
let mut tt = tt.clone();
tt.apply_subst(&self.σ);
//eprintln!("update σ : {:?} --> {:?}", v, tt);
2025-05-01 06:10:30 +02:00
new_σ.insert(v.clone(), tt.normalize());
}
self.σ = new_σ;
}
2025-05-01 06:10:30 +02:00
pub fn eval_equation(&mut self, unification_pair: ConstraintPair) -> Result<(), ConstraintError> {
match (&unification_pair.lhs, &unification_pair.rhs) {
2025-05-01 06:10:30 +02:00
(TypeTerm::TypeID(TypeID::Var(varid)), t) |
(t, TypeTerm::TypeID(TypeID::Var(varid))) => {
if ! t.contains_var( *varid ) {
self.σ.insert(TypeID::Var(*varid), t.clone());
self.reapply_subst();
Ok(())
2025-05-01 06:10:30 +02:00
} else if t == &TypeTerm::TypeID(TypeID::Var(*varid)) {
Ok(())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: TypeTerm::TypeID(TypeID::Var(*varid)), t2: t.clone() })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::TypeID(a1), TypeTerm::TypeID(a2)) => {
if a1 == a2 { Ok(()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs }) }
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Num(n1), TypeTerm::Num(n2)) => {
if n1 == n2 { Ok(()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs }) }
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Char(c1), TypeTerm::Char(c2)) => {
if c1 == c2 { Ok(()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs }) }
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Ladder(a1), TypeTerm::Ladder(a2)) |
(TypeTerm::Spec(a1), TypeTerm::Spec(a2)) => {
if a1.len() == a2.len() {
for (i, (x, y)) in a1.iter().cloned().zip(a2.iter().cloned()).enumerate().rev() {
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
self.equal_pairs.push(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: x,
rhs: y,
addr: new_addr
});
}
Ok(())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Seq{ seq_repr: lhs_seq_repr, items: lhs_items },
TypeTerm::Seq { seq_repr: rhs_seq_repr, items: rhs_items })
=> {
let mut new_addr = unification_pair.addr.clone();
new_addr.push(0);
if let Some(rhs_seq_repr) = rhs_seq_repr.as_ref() {
if let Some(lhs_seq_repr) = lhs_seq_repr.as_ref() {
2025-05-01 06:10:30 +02:00
let _seq_repr_ψ = self.eval_equation(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_seq_repr.clone(), rhs: *rhs_seq_repr.clone() })?;
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr, t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
if lhs_items.len() == rhs_items.len() {
for (i, (lhs_ty, rhs_ty)) in lhs_items.into_iter().zip(rhs_items.into_iter()).enumerate()
{
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
2025-05-01 06:10:30 +02:00
self.equal_pairs.push( ConstraintPair { addr: new_addr, lhs: lhs_ty.clone(), rhs: rhs_ty.clone() } );
}
Ok(())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Struct{ struct_repr: lhs_struct_repr, members: lhs_members },
TypeTerm::Struct{ struct_repr: rhs_struct_repr, members: rhs_members })
=> {
let new_addr = unification_pair.addr.clone();
if let Some(rhs_struct_repr) = rhs_struct_repr.as_ref() {
if let Some(lhs_struct_repr) = lhs_struct_repr.as_ref() {
2025-05-01 06:10:30 +02:00
let _struct_repr_ψ = self.eval_subtype(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_struct_repr.clone(), rhs: *rhs_struct_repr.clone() })?;
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr.clone(), t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
if lhs_members.len() == rhs_members.len() {
for (i,
2025-05-01 06:10:30 +02:00
(StructMember{ symbol: lhs_symbol, ty: lhs_ty},
StructMember{ symbol: rhs_symbol, ty: rhs_ty })
) in
lhs_members.into_iter().zip(rhs_members.into_iter()).enumerate()
{
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
2025-05-01 06:10:30 +02:00
self.equal_pairs.push( ConstraintPair { addr: new_addr, lhs: lhs_ty.clone(), rhs: rhs_ty.clone() } );
}
Ok(())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Enum{ enum_repr: lhs_enum_repr, variants: lhs_variants },
TypeTerm::Enum{ enum_repr: rhs_enum_repr, variants: rhs_variants })
=> {
let mut new_addr = unification_pair.addr.clone();
if let Some(rhs_enum_repr) = rhs_enum_repr.as_ref() {
if let Some(lhs_enum_repr) = lhs_enum_repr.as_ref() {
2025-05-01 06:10:30 +02:00
let _enum_repr_ψ = self.eval_subtype(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_enum_repr.clone(), rhs: *rhs_enum_repr.clone() })?;
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr, t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
if lhs_variants.len() == rhs_variants.len() {
for (i,
2025-05-01 06:10:30 +02:00
(EnumVariant{ symbol: lhs_symbol, ty: lhs_ty },
EnumVariant{ symbol: rhs_symbol, ty: rhs_ty })
) in
lhs_variants.into_iter().zip(rhs_variants.into_iter()).enumerate()
{
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
2025-05-01 06:10:30 +02:00
self.equal_pairs.push( ConstraintPair { addr: new_addr, lhs: lhs_ty.clone(), rhs: rhs_ty.clone() } );
}
Ok(())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
_ => Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
pub fn add_lower_subtype_bound(&mut self, v: u64, new_lower_bound: TypeTerm) -> Result<(),()> {
2025-05-01 06:10:30 +02:00
if new_lower_bound == TypeTerm::TypeID(TypeID::Var(v)) {
return Ok(());
}
if new_lower_bound.contains_var(v) {
// loop
return Err(());
}
if let Some(lower_bound) = self.lower_bounds.get(&v).cloned() {
2025-05-01 06:10:30 +02:00
eprintln!("var already exists. check max. type");
if let Ok(halo) = self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: lower_bound.clone(),
rhs: new_lower_bound.clone(),
addr: vec![]
}
) {
2025-05-01 06:10:30 +02:00
eprintln!("found more general lower bound");
eprintln!("set var {}'s lowerbound to {:?}", v, new_lower_bound.clone());
// generalize variable type to supertype
self.lower_bounds.insert(v, new_lower_bound);
Ok(())
} else if let Ok(halo) = self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair{
lhs: new_lower_bound,
rhs: lower_bound,
addr: vec![]
}
) {
2025-05-01 06:10:30 +02:00
eprintln!("OK, is already larger type");
Ok(())
} else {
2025-05-01 06:10:30 +02:00
eprintln!("violated subtype restriction");
Err(())
}
} else {
2025-05-01 06:10:30 +02:00
eprintln!("set var {}'s lowerbound to {:?}", v, new_lower_bound.clone());
self.lower_bounds.insert(v, new_lower_bound);
Ok(())
}
}
2025-05-01 06:10:30 +02:00
pub fn add_upper_subtype_bound(&mut self, v: u64, new_upper_bound: TypeTerm) -> Result<(),()> {
if new_upper_bound == TypeTerm::TypeID(TypeID::Var(v)) {
return Ok(());
}
if new_upper_bound.contains_var(v) {
// loop
return Err(());
}
if let Some(upper_bound) = self.upper_bounds.get(&v).cloned() {
if let Ok(_halo) = self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: new_upper_bound.clone(),
rhs: upper_bound,
addr: vec![]
}
) {
2025-05-01 06:10:30 +02:00
eprintln!("found a lower upper bound: {} <= {:?}", v, new_upper_bound);
// found a lower upper bound
self.upper_bounds.insert(v, new_upper_bound);
Ok(())
} else {
2025-05-01 06:10:30 +02:00
eprintln!("new upper bound violates subtype restriction");
Err(())
}
} else {
2025-05-01 06:10:30 +02:00
eprintln!("set upper bound: {} <= {:?}", v, new_upper_bound);
self.upper_bounds.insert(v, new_upper_bound);
Ok(())
}
}
2025-05-01 06:10:30 +02:00
pub fn eval_subtype(&mut self, unification_pair: ConstraintPair) -> Result<
// ok: halo type
2025-05-01 06:10:30 +02:00
TypeTerm,
// error
2025-05-01 06:10:30 +02:00
ConstraintError
> {
2025-05-01 06:10:30 +02:00
eprintln!("eval_subtype {:?} <=? {:?}", unification_pair.lhs, unification_pair.rhs);
match (unification_pair.lhs.clone().strip(), unification_pair.rhs.clone().strip()) {
/*
Variables
*/
2025-05-01 06:10:30 +02:00
(t, TypeTerm::TypeID(TypeID::Var(v))) => {
//eprintln!("t <= variable");
if self.add_lower_subtype_bound(v, t.clone()).is_ok() {
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::unit())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: TypeTerm::TypeID(TypeID::Var(v)), t2: t })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::TypeID(TypeID::Var(v)), t) => {
//eprintln!("variable <= t");
if self.add_upper_subtype_bound(v, t.clone()).is_ok() {
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::unit())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: TypeTerm::TypeID(TypeID::Var(v)), t2: t })
}
}
/*
Atoms
*/
2025-05-01 06:10:30 +02:00
(TypeTerm::TypeID(a1), TypeTerm::TypeID(a2)) => {
if a1 == a2 { Ok(TypeTerm::unit()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs}) }
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Num(n1), TypeTerm::Num(n2)) => {
if n1 == n2 { Ok(TypeTerm::unit()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs }) }
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Char(c1), TypeTerm::Char(c2)) => {
if c1 == c2 { Ok(TypeTerm::unit()) } else { Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs }) }
}
/*
Complex Types
*/
2025-05-01 06:10:30 +02:00
(TypeTerm::Seq{ seq_repr: lhs_seq_repr, items: lhs_items },
TypeTerm::Seq { seq_repr: rhs_seq_repr, items: rhs_items })
=> {
let mut new_addr = unification_pair.addr.clone();
new_addr.push(0);
if let Some(rhs_seq_repr) = rhs_seq_repr.as_ref() {
//eprintln!("subtype unify: rhs has seq-repr: {:?}", rhs_seq_repr);
if let Some(lhs_seq_repr) = lhs_seq_repr.as_ref() {
//eprintln!("check if it maches lhs seq-repr: {:?}", lhs_seq_repr);
2025-05-01 06:10:30 +02:00
let _seq_repr_ψ = self.eval_subtype(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_seq_repr.clone(), rhs: *rhs_seq_repr.clone() })?;
//eprintln!("..yes!");
} else {
//eprintln!("...but lhs has none.");
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr, t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
let mut new_addr = unification_pair.addr.clone();
new_addr.push(1);
if lhs_items.len() == rhs_items.len() && lhs_items.len() > 0 {
2025-05-01 06:10:30 +02:00
match self.eval_subtype( ConstraintPair { addr: new_addr.clone(), lhs: lhs_items[0].clone(), rhs: rhs_items[0].clone() } ) {
Ok(ψ) => Ok(TypeTerm::Seq {
seq_repr: None, // <<- todo
items: vec![ψ]
}.strip()),
2025-05-01 06:10:30 +02:00
Err(e) => Err(ConstraintError{
addr: new_addr,
t1: e.t1,
t2: e.t2,
})
}
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: new_addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Struct{ struct_repr: lhs_struct_repr, members: lhs_members },
TypeTerm::Struct{ struct_repr: rhs_struct_repr, members: rhs_members })
=> {
let new_addr = unification_pair.addr.clone();
if let Some(rhs_struct_repr) = rhs_struct_repr.as_ref() {
if let Some(lhs_struct_repr) = lhs_struct_repr.as_ref() {
2025-05-01 06:10:30 +02:00
let _struct_repr_ψ = self.eval_subtype(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_struct_repr.clone(), rhs: *rhs_struct_repr.clone() })?;
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr.clone(), t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
if lhs_members.len() == rhs_members.len() {
let mut halo_members = Vec::new();
for (i,
2025-05-01 06:10:30 +02:00
(StructMember{ symbol: lhs_symbol, ty: lhs_ty},
StructMember{ symbol: rhs_symbol, ty: rhs_ty })
) in
lhs_members.into_iter().zip(rhs_members.into_iter()).enumerate()
{
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
2025-05-01 06:10:30 +02:00
let ψ = self.eval_subtype( ConstraintPair { addr: new_addr, lhs: lhs_ty.clone(), rhs: rhs_ty.clone() } )?;
halo_members.push(StructMember { symbol: lhs_symbol, ty: ψ });
}
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::Struct {
struct_repr: None,
members: halo_members
})
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Enum{ enum_repr: lhs_enum_repr, variants: lhs_variants },
TypeTerm::Enum{ enum_repr: rhs_enum_repr, variants: rhs_variants })
=> {
let mut new_addr = unification_pair.addr.clone();
if let Some(rhs_enum_repr) = rhs_enum_repr.as_ref() {
if let Some(lhs_enum_repr) = lhs_enum_repr.as_ref() {
2025-05-01 06:10:30 +02:00
let _enum_repr_ψ = self.eval_subtype(ConstraintPair { addr: new_addr.clone(), lhs: *lhs_enum_repr.clone(), rhs: *rhs_enum_repr.clone() })?;
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError{ addr: new_addr, t1: unification_pair.lhs, t2: unification_pair.rhs });
}
}
if lhs_variants.len() == rhs_variants.len() {
let mut halo_variants = Vec::new();
for (i,
2025-05-01 06:10:30 +02:00
(EnumVariant{ symbol: lhs_symbol, ty: lhs_ty },
EnumVariant{ symbol: rhs_symbol, ty: rhs_ty })
) in
lhs_variants.into_iter().zip(rhs_variants.into_iter()).enumerate()
{
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
2025-05-01 06:10:30 +02:00
let ψ = self.eval_subtype( ConstraintPair { addr: new_addr, lhs: lhs_ty.clone(), rhs: rhs_ty.clone() } )?;
halo_variants.push(EnumVariant { symbol: lhs_symbol, ty: ψ });
}
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::Enum {
enum_repr: None,
variants: halo_variants
})
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
/*
Ladders
*/
2025-05-01 06:10:30 +02:00
(TypeTerm::Ladder(a1), TypeTerm::Ladder(a2)) => {
let mut l1_iter = a1.into_iter().enumerate().rev();
let mut l2_iter = a2.into_iter().rev();
let mut halo_ladder = Vec::new();
while let Some(rhs) = l2_iter.next() {
//eprintln!("take rhs = {:?}", rhs);
if let Some((i, lhs)) = l1_iter.next() {
//eprintln!("take lhs ({}) = {:?}", i, lhs);
let mut addr = unification_pair.addr.clone();
addr.push(i);
//eprintln!("addr = {:?}", addr);
match (lhs.clone(), rhs.clone()) {
2025-05-01 06:10:30 +02:00
(t, TypeTerm::TypeID(TypeID::Var(v))) => {
if self.add_upper_subtype_bound(v,t.clone()).is_ok() {
let mut new_upper_bound_ladder = vec![ t ];
if let Some(next_rhs) = l2_iter.next() {
} else {
// ladder of rhs is empty
// take everything
while let Some((i,t)) = l1_iter.next() {
new_upper_bound_ladder.push(t);
}
}
new_upper_bound_ladder.reverse();
2025-05-01 06:10:30 +02:00
if self.add_upper_subtype_bound(v, TypeTerm::Ladder(new_upper_bound_ladder)).is_ok() {
// ok
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError {
addr,
t1: lhs,
t2: rhs
});
}
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError {
addr,
t1: lhs,
t2: rhs
});
}
}
(lhs, rhs) => {
if let Ok(ψ) = self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: lhs.clone(),
rhs: rhs.clone(),
addr:addr.clone(),
}
) {
// ok.
//eprintln!("rungs are subtypes. continue");
halo_ladder.push(ψ);
} else {
2025-05-01 06:10:30 +02:00
return Err(ConstraintError {
addr,
t1: lhs,
t2: rhs
});
}
}
}
} else {
// not a subtype,
2025-05-01 06:10:30 +02:00
return Err(ConstraintError {
addr: vec![],
t1: unification_pair.lhs,
t2: unification_pair.rhs
});
}
}
2025-05-01 06:10:30 +02:00
//eprintln!("left ladder fully consumed");
for (i,t) in l1_iter {
//!("push {} to halo ladder", t.pretty(self.dict,0));
halo_ladder.push(t);
}
halo_ladder.reverse();
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::Ladder(halo_ladder).strip())//.param_normalize())
},
2025-05-01 06:10:30 +02:00
(TypeTerm::Seq { seq_repr, items }, TypeTerm::Spec(mut args)) => {
let mut new_addr = unification_pair.addr.clone();
let mut n_halos_required = 0;
if args.len() > 1 {
if let Some(seq_repr) = seq_repr {
let rhs = args.remove(0);
let reprψinterface = rhs.get_interface_type();
let mut reprψ = self.eval_subtype(ConstraintPair{
addr: new_addr.clone(),
lhs: seq_repr.as_ref().clone(),
rhs
})?;
let mut itemsψ = Vec::new();
for (i,(item, arg)) in items.iter().zip(args.iter()).enumerate() {
let mut new_addr = new_addr.clone();
new_addr.push(i);
let ψ = self.eval_subtype(ConstraintPair {
addr: new_addr,
lhs: item.clone(),
rhs: arg.clone()
})?;
if ψ.is_empty() {
itemsψ.push(item.get_interface_type());
} else {
if n_halos_required == 0 {
// first argument that requires halo,
// add highest-common-rung to sequence repr
reprψ = TypeTerm::Ladder(vec![
reprψ,
reprψinterface.clone()
]).normalize();
} else {
/* todo
if let Some(mut t) = itemsψ.last_mut() {
t = TypeTerm::Ladder(vec![
t.clone(),
args[i]
]).normalize();
} else {
t =
}
*/
}
n_halos_required += 1;
itemsψ.push(ψ);
}
}
eprintln!("itemsψ = {:?}", itemsψ);
Ok(
TypeTerm::Seq {
seq_repr: if reprψ.is_empty() { None }
else { Some(Box::new(reprψ)) },
items: itemsψ
}
)
} else {
Err(ConstraintError {
addr: new_addr,
t1: unification_pair.lhs,
t2: unification_pair.rhs
})
}
} else {
Err(ConstraintError {
addr: unification_pair.addr,
t1: unification_pair.lhs,
t2: unification_pair.rhs
})
}
}
(t, TypeTerm::Ladder(a1)) => {
Err(ConstraintError{ addr: unification_pair.addr, t1: t, t2: TypeTerm::Ladder(a1) })
}
2025-05-01 06:10:30 +02:00
(TypeTerm::Ladder(mut a1), t) => {
if a1.len() > 0 {
let mut new_addr = unification_pair.addr.clone();
2025-05-01 06:10:30 +02:00
new_addr.push( a1.len() - 1 );
if let Ok(halo) = self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: a1.pop().unwrap(),
rhs: t.clone(),
addr: new_addr
}
) {
a1.push(halo);
if a1.len() == 1 {
Ok(a1.pop().unwrap())
} else {
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::Ladder(a1).normalize())
}
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: TypeTerm::Ladder(a1), t2: t })
}
2025-05-01 06:10:30 +02:00
} else if t == TypeTerm::unit() {
Ok(TypeTerm::unit())
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError { addr: unification_pair.addr, t1: TypeTerm::unit(), t2: t })
}
}
/*
Application
*/
2025-05-01 06:10:30 +02:00
(TypeTerm::Spec(a1), TypeTerm::Spec(a2)) => {
if a1.len() == a2.len() {
let mut halo_args = Vec::new();
let mut n_halos_required = 0;
for (i, (mut x, mut y)) in a1.iter().cloned().zip(a2.iter().cloned()).enumerate() {
let mut new_addr = unification_pair.addr.clone();
new_addr.push(i);
x = x.strip();
// eprintln!("before strip: {:?}", y);
y = y.strip();
// eprintln!("after strip: {:?}", y);
// eprintln!("APP<> eval {:?} \n ?<=? {:?} ", x, y);
match self.eval_subtype(
2025-05-01 06:10:30 +02:00
ConstraintPair {
lhs: x.clone(),
rhs: y.clone(),
addr: new_addr,
}
) {
Ok(halo) => {
2025-05-01 06:10:30 +02:00
if halo == TypeTerm::unit() {
let mut y = y.clone();
y.apply_subst(&self.σ);
y = y.strip();
let top = y.get_interface_type();
// eprintln!("add top {}", top.pretty(self.dict, 0));
halo_args.push(top);
} else {
//println!("add halo {}", halo.pretty(self.dict, 0));
if n_halos_required > 0 {
let x = &mut halo_args[n_halos_required-1];
2025-05-01 06:10:30 +02:00
if let TypeTerm::Ladder(arg_rungs) = x {
let mut a = a2[n_halos_required-1].clone();
a.apply_subst(&self.σ);
arg_rungs.push(a.get_interface_type());
} else {
2025-05-01 06:10:30 +02:00
*x = TypeTerm::Ladder(vec![
x.clone(),
a2[n_halos_required-1].get_interface_type()
]);
x.apply_subst(&self.σ);
}
}
halo_args.push(halo);
n_halos_required += 1;
}
},
Err(err) => { return Err(err); }
}
}
if n_halos_required > 0 {
//eprintln!("halo args : {:?}", halo_args);
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::Spec(halo_args))
} else {
2025-05-01 06:10:30 +02:00
Ok(TypeTerm::unit())
}
} else {
2025-05-01 06:10:30 +02:00
Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
_ => Err(ConstraintError{ addr: unification_pair.addr, t1: unification_pair.lhs, t2: unification_pair.rhs })
}
}
2025-05-01 06:10:30 +02:00
pub fn solve(mut self) -> Result<(Vec<TypeTerm>, HashMap<TypeID, TypeTerm>), ConstraintError> {
// solve equations
while let Some( mut equal_pair ) = self.equal_pairs.pop() {
equal_pair.lhs.apply_subst(&self.σ);
equal_pair.rhs.apply_subst(&self.σ);
self.eval_equation(equal_pair)?;
}
// solve subtypes
2025-05-01 06:10:30 +02:00
eprintln!("------ SOLVE SUBTYPES ---- ");
for mut subtype_pair in self.subtype_pairs.clone().into_iter() {
subtype_pair.lhs.apply_subst(&self.σ);
subtype_pair.rhs.apply_subst(&self.σ);
let _halo = self.eval_subtype( subtype_pair.clone() )?.strip();
}
// add variables from subtype bounds
for (var_id, t) in self.upper_bounds.iter() {
// eprintln!("VAR {} upper bound {:?}", var_id, t);
self.σ.insert(TypeID::Var(*var_id), t.clone().strip());
}
for (var_id, t) in self.lower_bounds.iter() {
// eprintln!("VAR {} lower bound {:?}", var_id, t);
self.σ.insert(TypeID::Var(*var_id), t.clone().strip());
}
self.reapply_subst();
2025-05-01 06:10:30 +02:00
eprintln!("------ MAKE HALOS -----");
let mut halo_types = Vec::new();
for mut subtype_pair in self.subtype_pairs.clone().into_iter() {
2025-05-01 06:10:30 +02:00
subtype_pair.lhs = subtype_pair.lhs.apply_subst(&self.σ).clone();
subtype_pair.rhs = subtype_pair.rhs.apply_subst(&self.σ).clone();
let halo = self.eval_subtype( subtype_pair.clone() )?.strip();
halo_types.push(halo);
}
// solve traits
while let Some( trait_pair ) = self.trait_pairs.pop() {
unimplemented!();
}
Ok((halo_types, self.σ))
}
}
pub fn unify(
2025-05-01 06:10:30 +02:00
t1: &TypeTerm,
t2: &TypeTerm
) -> Result<HashMap<TypeID, TypeTerm>, ConstraintError> {
let unification = ConstraintSystem::new_eq(vec![ ConstraintPair{ lhs: t1.clone(), rhs: t2.clone(), addr:vec![] } ]);
Ok(unification.solve()?.1)
}
pub fn subtype_unify(
2025-05-01 06:10:30 +02:00
t1: &TypeTerm,
t2: &TypeTerm
) -> Result<(TypeTerm, HashMap<TypeID, TypeTerm>), ConstraintError> {
let unification = ConstraintSystem::new_sub(vec![ ConstraintPair{ lhs: t1.clone(), rhs: t2.clone(), addr:vec![] } ]);
unification.solve().map( |(halos,σ)| ( halos.first().cloned().unwrap_or(TypeTerm::unit()), σ) )
}
pub fn parallel_unify(
2025-05-01 06:10:30 +02:00
t1: &TypeTerm,
t2: &TypeTerm
) -> Result<(TypeTerm, HashMap<TypeID, TypeTerm>), ConstraintError> {
let unification = ConstraintSystem::new_parallel(vec![ ConstraintPair{ lhs: t1.clone(), rhs: t2.clone(), addr:vec![] } ]);
unification.solve().map( |(halos,σ)| ( halos.first().cloned().unwrap_or(TypeTerm::unit()), σ) )
}
//<<<<>>>><<>><><<>><<<*>>><<>><><<>><<<<>>>>\\