wip typing

This commit is contained in:
Michael Sippel 2024-10-09 07:28:56 +02:00
parent c9c42d383f
commit b8535aa772
Signed by: senvas
GPG key ID: F96CF119C34B64A6
10 changed files with 749 additions and 552 deletions

View file

@ -4,11 +4,13 @@ use {
sync::{Arc, RwLock} sync::{Arc, RwLock}
}, },
crate::{ crate::{
lexer::InputRegionTag lexer::InputRegionTag,
} symbols::Scope
},
tiny_ansi::TinyAnsi
}; };
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug)]
pub enum Statement { pub enum Statement {
Assignment { Assignment {
name_region: InputRegionTag, name_region: InputRegionTag,
@ -17,33 +19,74 @@ pub enum Statement {
}, },
LetAssign { LetAssign {
name_region: InputRegionTag, name_region: InputRegionTag,
typ: Option<TypeTag>, typ: Option<laddertypes::TypeTerm>,
var_id: String, var_id: String,
val_expr: LTExpr, val_expr: LTExpr,
}, },
WhileLoop {
condition: LTExpr,
body: Vec<Statement>,
},
Return(LTExpr), Return(LTExpr),
Expr(LTExpr), Expr(LTExpr),
} }
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub enum TypeError { pub enum TypeErrorKind {
ParseError(laddertypes::parser::ParseError), // ParseError(laddertypes::parser::ParseError),
Mismatch { AssignMismatch {
expected: laddertypes::TypeTerm, expected: laddertypes::TypeTerm,
received: laddertypes::TypeTerm, received: laddertypes::TypeTerm,
}, },
ArgTypeMismatch {
expected: laddertypes::TypeTerm,
received: laddertypes::TypeTerm,
},
BranchMismatch {
if_branch: laddertypes::TypeTerm,
else_branch: laddertypes::TypeTerm
},
SuperfluousArgument,
NoSymbol, NoSymbol,
SuperflousArgument,
Todo Todo
} }
pub type TypeTag = Result<laddertypes::TypeTerm, TypeError>; #[derive(Clone, Debug)]
pub struct TypeError {
pub region: InputRegionTag,
pub kind: TypeErrorKind
}
#[derive(Clone, Debug, PartialEq)] impl TypeErrorKind {
pub fn fmt(&self, dict: &mut impl laddertypes::TypeDict) -> String {
match self {
TypeErrorKind::BranchMismatch { if_branch, else_branch } => {
format!("Type Mismatch\nif branch\n:::{}\nelse branch\n:::{}",
if_branch.clone().sugar(dict).pretty(dict, 1),
else_branch.clone().sugar(dict).pretty(dict, 1)
)
},
TypeErrorKind::AssignMismatch { expected, received } |
TypeErrorKind::ArgTypeMismatch { expected, received } => {
format!("Type Mismatch\n{}{}\n{}{}",
"expected\n ::: ".green(),
expected.clone().sugar(dict).pretty(dict, 1),
"received\n ::: ".green(),
received.clone().sugar(dict).pretty(dict, 1)
)
}
TypeErrorKind::SuperfluousArgument => {
format!("Superfluous Argument")
}
TypeErrorKind::NoSymbol => {
format!("Unknown Symbol")
}
TypeErrorKind::Todo => {
format!("TODO")
}
}
}
}
pub type TypeTag = Result< laddertypes::TypeTerm, Vec<TypeError> >;
#[derive(Clone, Debug)]
pub enum LTExpr { pub enum LTExpr {
WordLiteral { WordLiteral {
region: InputRegionTag, region: InputRegionTag,
@ -60,12 +103,12 @@ pub enum LTExpr {
}, },
Ascend { Ascend {
region: InputRegionTag, region: InputRegionTag,
typ: TypeTag, typ: laddertypes::TypeTerm,
expr: Box<LTExpr> expr: Box<LTExpr>
}, },
Descend { Descend {
region: InputRegionTag, region: InputRegionTag,
typ: TypeTag, typ: laddertypes::TypeTerm,
expr: Box<LTExpr> expr: Box<LTExpr>
}, },
Application { Application {
@ -76,6 +119,7 @@ pub enum LTExpr {
}, },
Abstraction { Abstraction {
region: InputRegionTag, region: InputRegionTag,
scope: Arc<RwLock<Scope>>,
args: Vec<(InputRegionTag, String, Option<TypeTag>)>, args: Vec<(InputRegionTag, String, Option<TypeTag>)>,
body: Box<LTExpr>, body: Box<LTExpr>,
}, },
@ -85,30 +129,87 @@ pub enum LTExpr {
if_expr: Box<LTExpr>, if_expr: Box<LTExpr>,
else_expr: Box<LTExpr>, else_expr: Box<LTExpr>,
}, },
WhileLoop {
region: InputRegionTag,
condition: Box<LTExpr>,
body: Box<LTExpr>,
},
Block { Block {
region: InputRegionTag, region: InputRegionTag,
scope: Arc<RwLock<Scope>>,
statements: Vec<Statement>, statements: Vec<Statement>,
}, },
ExportBlock { ExportBlock {
region: InputRegionTag, region: InputRegionTag,
scope: Arc<RwLock<Scope>>,
statements: Vec<Statement>, statements: Vec<Statement>,
} }
} }
impl LTExpr { impl LTExpr {
pub fn get_region(&self) -> InputRegionTag { pub fn get_region(&self) -> InputRegionTag {
match self { match self {
LTExpr::WordLiteral { region, val } => region, LTExpr::WordLiteral{ region, val } => region,
LTExpr::StringLiteral { region, value } => region, LTExpr::StringLiteral{ region, value } => region,
LTExpr::Symbol { region, typ, symbol } => region, LTExpr::Symbol{ region, typ, symbol } => region,
LTExpr::Ascend { region, typ, expr } => region, LTExpr::Ascend{ region, typ, expr } => region,
LTExpr::Descend{ region, typ, expr } => region, LTExpr::Descend{ region, typ, expr } => region,
LTExpr::Application{ region, typ, head, body } => region, LTExpr::Application{ region, typ, head, body } => region,
LTExpr::Abstraction{ region, args, body } => region, LTExpr::Abstraction{ region, scope, args, body } => region,
LTExpr::Branch{ region, condition, if_expr, else_expr } => region, LTExpr::Branch{ region, condition, if_expr, else_expr } => region,
LTExpr::Block{ region, statements } => region, LTExpr::WhileLoop{ region, condition, body } => region,
LTExpr::ExportBlock{ region, statements } => region LTExpr::Block{ region, scope, statements } => region,
LTExpr::ExportBlock{ region, scope, statements } => region
}.clone() }.clone()
} }
pub fn get(&self, addr: Vec<usize>) -> Option<LTExpr> {
if addr.len() == 0 {
Some(self.clone())
} else {
let mut sub_addr = addr.clone();
let top_idx = sub_addr.remove(0);
match self {
LTExpr::Ascend{ region, typ, expr } => expr.get(addr),
LTExpr::Descend{ region, typ, expr } => expr.get(addr),
LTExpr::Application{ region, typ, head, body } => {
match top_idx {
0 => head.get(sub_addr),
i => {
if let Some(b) = body.get(i - 1) {
b.get(sub_addr)
} else {
None
}
}
}
}
LTExpr::Abstraction{ region, scope, args, body } => {
body.get(addr)
}
LTExpr::Branch{ region, condition, if_expr, else_expr } => {
match top_idx {
0 => condition.get(sub_addr),
1 => if_expr.get(sub_addr),
2 => else_expr.get(sub_addr),
_ => None
}
}
LTExpr::WhileLoop{ region, condition, body } => {
match top_idx {
0 => condition.get(sub_addr),
1 => body.get(sub_addr),
_ => None
}
}
LTExpr::Block{ region, scope, statements } |
LTExpr::ExportBlock{ region, scope, statements } => {
// statements.get(top_idx)?.get(sub_addr)
None
}
_ => None
}
}
}
} }

View file

@ -2,6 +2,7 @@
pub mod expr; pub mod expr;
pub mod lexer; pub mod lexer;
pub mod parser; pub mod parser;
pub mod typing;
pub mod procedure_compiler; pub mod procedure_compiler;
pub mod runtime; pub mod runtime;
pub mod symbols; pub mod symbols;

View file

@ -2,6 +2,7 @@ use {
crate::{ crate::{
expr::{LTExpr, Statement, TypeError, TypeTag}, expr::{LTExpr, Statement, TypeError, TypeTag},
lexer::{LTIRLexer, LTIRToken, LexError, InputRegionTag}, lexer::{LTIRLexer, LTIRToken, LexError, InputRegionTag},
symbols::{Scope}
}, },
laddertypes::{ laddertypes::{
dict::TypeDict, dict::TypeDict,
@ -180,7 +181,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
pub fn parse_statement<It>( pub fn parse_statement<It>(
typectx: &mut impl TypeDict, super_scope: &Arc<RwLock<Scope>>,
tokens: &mut Peekable<It>, tokens: &mut Peekable<It>,
) -> Result<crate::expr::Statement, (InputRegionTag, ParseError)> ) -> Result<crate::expr::Statement, (InputRegionTag, ParseError)>
where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)> where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
@ -193,7 +194,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
tokens.next(); tokens.next();
// todo accept address-expression instead of symbol // todo accept address-expression instead of symbol
let (name_region, name) = parse_symbol(tokens)?; let (name_region, name) = parse_symbol(tokens)?;
let val_expr = parse_expr(typectx, tokens)?; let val_expr = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::StatementSep)?; let _ = parse_expect(tokens, LTIRToken::StatementSep)?;
Ok(Statement::Assignment { Ok(Statement::Assignment {
@ -205,49 +206,40 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
"let" => { "let" => {
tokens.next(); tokens.next();
let (name_region, name) = parse_symbol(tokens)?; let (name_region, name) = parse_symbol(tokens)?;
let typ = parse_type_tag(typectx, tokens)?; let typ = parse_type_tag(&mut *super_scope.write().unwrap(), tokens)?;
/* todo /* todo
let mut variable_bindings = parse_binding_expr(typectx, tokens)?; let mut variable_bindings = parse_binding_expr(typectx, tokens)?;
*/ */
let _ = parse_expect(tokens, LTIRToken::AssignValue); let _ = parse_expect(tokens, LTIRToken::AssignValue);
let val_expr = parse_expr(typectx, tokens)?; let val_expr = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::StatementSep)?; let _ = parse_expect(tokens, LTIRToken::StatementSep)?;
Ok(Statement::LetAssign { Ok(Statement::LetAssign {
name_region, name_region,
typ: match typ { typ: match typ {
Some((r,t)) => Some(Ok(t)), Some((r,t)) => Some(t),
None => None None => None
}, },
var_id: name, var_id: name,
val_expr, val_expr,
}) })
} }
"while" => {
tokens.next();
let _ = parse_expect(tokens, LTIRToken::ExprOpen)?;
let cond = parse_expr(typectx, tokens)?;
let _ = parse_expect(tokens, LTIRToken::ExprClose)?;
Ok(Statement::WhileLoop {
condition: cond,
body: parse_statement_block(typectx, tokens)?,
})
}
"return" => { "return" => {
tokens.next(); tokens.next();
let expr = parse_expr(typectx, tokens)?; let expr = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::StatementSep)?; let _ = parse_expect(tokens, LTIRToken::StatementSep)?;
Ok(Statement::Return(parse_expr(typectx, tokens)?)) Ok(Statement::Return(parse_expr(super_scope, tokens)?))
} }
_ => { _ => {
let expr = parse_expr(typectx, tokens)?; let expr = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::StatementSep)?; let _ = parse_expect(tokens, LTIRToken::StatementSep)?;
Ok(Statement::Expr(expr)) Ok(Statement::Expr(expr))
} }
} }
} }
Ok(_) => { Ok(_) => {
let expr = parse_expr(typectx, tokens)?; let expr = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::StatementSep)?; let _ = parse_expect(tokens, LTIRToken::StatementSep)?;
Ok(Statement::Expr(expr)) Ok(Statement::Expr(expr))
} }
@ -259,7 +251,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
pub fn parse_statement_block<It>( pub fn parse_statement_block<It>(
typectx: &mut impl TypeDict, scope: &Arc<RwLock<Scope>>,
tokens: &mut Peekable<It>, tokens: &mut Peekable<It>,
) -> Result<Vec<Statement>, (InputRegionTag, ParseError)> ) -> Result<Vec<Statement>, (InputRegionTag, ParseError)>
where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)> where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
@ -274,7 +266,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
return Ok(statements); return Ok(statements);
} }
Ok(_) => { Ok(_) => {
statements.push(parse_statement(typectx, tokens)?); statements.push(parse_statement(scope, tokens)?);
} }
Err(err) => { Err(err) => {
return Err((*region, ParseError::LexError(err.clone()))); return Err((*region, ParseError::LexError(err.clone())));
@ -296,13 +288,8 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
Some((region, Ok(LTIRToken::Char(c)))) => Ok( Some((region, Ok(LTIRToken::Char(c)))) => Ok(
LTExpr::Ascend { LTExpr::Ascend {
region: region.clone(), region: region.clone(),
typ: match typectx.parse("Char ~ Unicode ~ _2^32") { typ: typectx.parse("Char ~ Unicode ~ _2^32").unwrap(),
Ok(t) => Ok(t), expr: Box::new(LTExpr::WordLiteral{ region, val: c as tisc::VM_Word })
Err(e) => Err(TypeError::ParseError(e))
},
expr: Box::new(
LTExpr::WordLiteral{ region, val: c as tisc::VM_Word }
)
} }
), ),
Some((region, Ok(LTIRToken::Num(n)))) => Ok(LTExpr::WordLiteral{ region, val: n as tisc::VM_Word }), Some((region, Ok(LTIRToken::Num(n)))) => Ok(LTExpr::WordLiteral{ region, val: n as tisc::VM_Word }),
@ -313,7 +300,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
pub fn parse_expr<It>( pub fn parse_expr<It>(
typectx: &mut impl TypeDict, super_scope: &Arc<RwLock<Scope>>,
tokens: &mut Peekable<It>, tokens: &mut Peekable<It>,
) -> Result<crate::expr::LTExpr, (InputRegionTag, ParseError)> ) -> Result<crate::expr::LTExpr, (InputRegionTag, ParseError)>
where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)> where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
@ -327,12 +314,15 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
let region = region.clone(); let region = region.clone();
tokens.next(); tokens.next();
let mut variable_bindings = parse_binding_expr(typectx, tokens)?; let scope = Scope::with_parent(super_scope);
let mut variable_bindings = parse_binding_expr(&mut *scope.write().unwrap(), tokens)?;
let _ = parse_expect(tokens, LTIRToken::MapsTo); let _ = parse_expect(tokens, LTIRToken::MapsTo);
let body = parse_expr(typectx, tokens)?; let body = parse_expr(&scope, tokens)?;
return Ok(LTExpr::Abstraction { return Ok(LTExpr::Abstraction {
region, region,
scope,
args: variable_bindings.flatten().into_iter().map(|(r,s,t)| (r,s,t.map(|t|Ok(t))) ).collect(), args: variable_bindings.flatten().into_iter().map(|(r,s,t)| (r,s,t.map(|t|Ok(t))) ).collect(),
body: Box::new(body), body: Box::new(body),
}); });
@ -350,7 +340,7 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
_ => {} _ => {}
} }
children.push(parse_expr(typectx, tokens)?); children.push(parse_expr(super_scope, tokens)?);
} }
} }
Ok(LTIRToken::ExprClose) => { Ok(LTIRToken::ExprClose) => {
@ -358,10 +348,13 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
Ok(LTIRToken::BlockOpen) => { Ok(LTIRToken::BlockOpen) => {
let region = region.clone(); let region = region.clone();
let statements = parse_statement_block(typectx, tokens)?; let scope = Scope::with_parent(super_scope);
let statements = parse_statement_block(&scope, tokens)?;
children.push( children.push(
LTExpr::Block { LTExpr::Block {
region, region,
scope,
statements statements
}); });
} }
@ -379,37 +372,44 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
} }
Ok(LTIRToken::Ascend(type_str)) => { Ok(LTIRToken::Ascend(type_str)) => {
let mut region = region.clone(); let mut region = region.clone();
let typ = let typ = super_scope.write().unwrap().parse(type_str);
match typectx.parse(type_str) {
Ok(t) => Ok(t),
Err(e) => Err(TypeError::ParseError(e))
};
if let Some(expr) = children.pop() { if let Some(expr) = children.pop() {
region.begin = expr.get_region().begin; region.begin = expr.get_region().begin;
children.push(LTExpr::Ascend {
region: region.clone(), match typ {
typ, Ok(typ) => {
expr: Box::new(expr) children.push(LTExpr::Ascend {
}); region: region.clone(),
typ,
expr: Box::new(expr)
});
},
Err(e) => {
return Err((region, ParseError::TypeParseError(e)));
}
}
} }
tokens.next(); tokens.next();
} }
Ok(LTIRToken::Descend(type_str)) => { Ok(LTIRToken::Descend(type_str)) => {
let region = region.clone(); let region = region.clone();
let typ = let typ = super_scope.write().unwrap().parse(type_str);
match typectx.parse(type_str) {
Ok(t) => Ok(t),
Err(e) => Err(TypeError::ParseError(e))
};
if let Some(expr) = children.pop() { if let Some(expr) = children.pop() {
children.push(LTExpr::Descend { match typ {
region, Ok(typ) => {
typ, children.push(LTExpr::Descend {
expr: Box::new(expr) region,
}); typ,
expr: Box::new(expr)
});
}
Err(e) => {
return Err((region, ParseError::TypeParseError(e)));
}
}
} }
tokens.next(); tokens.next();
@ -419,18 +419,21 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
let region = region.clone(); let region = region.clone();
tokens.next(); tokens.next();
let _ = parse_expect(tokens, LTIRToken::ExprOpen)?; let _ = parse_expect(tokens, LTIRToken::ExprOpen)?;
let cond = parse_expr(typectx, tokens)?; let cond = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::ExprClose)?; let _ = parse_expect(tokens, LTIRToken::ExprClose)?;
let if_statements = parse_statement_block(typectx, tokens)?; let if_statements = parse_statement_block(super_scope, tokens)?;
let if_expr = LTExpr::Block{ region: region.clone(), statements: if_statements };
let mut else_expr = LTExpr::Block{ region: InputRegionTag::default(), statements: vec![] }; let scope = super_scope.clone();
let if_expr = LTExpr::Block{ region: region.clone(), scope, statements: if_statements };
let scope = super_scope.clone();
let mut else_expr = LTExpr::Block{ region: InputRegionTag::default(), scope, statements: vec![] };
if let Some((region, peektok)) = tokens.peek() { if let Some((region, peektok)) = tokens.peek() {
if let Ok(LTIRToken::Symbol(name)) = peektok { if let Ok(LTIRToken::Symbol(name)) = peektok {
if name == "else" { if name == "else" {
tokens.next(); tokens.next();
else_expr = parse_expr(typectx, tokens)?; else_expr = parse_expr(super_scope, tokens)?;
} }
} }
} }
@ -442,21 +445,35 @@ where It: Iterator<Item = (InputRegionTag, Result<LTIRToken, LexError>)>
else_expr: Box::new(else_expr), else_expr: Box::new(else_expr),
}); });
}, },
"while" => {
let region = region.clone();
tokens.next();
let _ = parse_expect(tokens, LTIRToken::ExprOpen)?;
let cond = parse_expr(super_scope, tokens)?;
let _ = parse_expect(tokens, LTIRToken::ExprClose)?;
children.push(LTExpr::WhileLoop {
region,
condition: Box::new(cond),
body: Box::new(parse_expr(super_scope, tokens)?),
});
}
"export" => { "export" => {
let region = region.clone(); let region = region.clone();
tokens.next(); tokens.next();
let block = parse_statement_block(typectx, tokens)?; let scope = Scope::with_parent(super_scope);
let block = parse_statement_block(&scope, tokens)?;
children.push(LTExpr::ExportBlock { children.push(LTExpr::ExportBlock {
region, region,
scope,
statements: block statements: block
}); });
}, },
name => { name => {
children.push(parse_atom(typectx, tokens)?); children.push(parse_atom(&mut *super_scope.write().unwrap(), tokens)?);
} }
}, },
Ok(atom) => { Ok(atom) => {
children.push(parse_atom(typectx, tokens)?); children.push(parse_atom(&mut *super_scope.write().unwrap(), tokens)?);
} }
Err(err) => { Err(err) => {
return Err((*region, ParseError::LexError(err.clone()))); return Err((*region, ParseError::LexError(err.clone())));

View file

@ -17,404 +17,81 @@ use {
}; };
pub struct ProcedureCompiler { pub struct ProcedureCompiler {
pub symbols: Arc<RwLock<Scope>>, proc_symbol: String,
scope: Arc<RwLock<Scope>>,
asm: tisc::Assembler, asm: tisc::Assembler,
linker: tisc::Linker, subroutines: Vec<tisc::assembler::AssemblyWord>,
result_size: usize, pub linker: tisc::Linker,
pub diagnostics: Vec<( InputRegionTag, String )> pub diagnostics: Vec<( InputRegionTag, String )>
} }
impl ProcedureCompiler { impl ProcedureCompiler {
pub fn new(parent_scope: &Arc<RwLock<Scope>>) -> Self { pub fn new(proc_symbol: String, scope: Arc<RwLock<Scope>>) -> Self {
ProcedureCompiler { ProcedureCompiler {
symbols: Scope::with_parent(parent_scope), proc_symbol,
scope,
subroutines: Vec::new(),
asm: tisc::Assembler::new(), asm: tisc::Assembler::new(),
linker: tisc::Linker::new(), linker: tisc::Linker::new(),
result_size: 0,
diagnostics: Vec::new() diagnostics: Vec::new()
} }
} }
/*
pub fn export_symbols(&self) -> Vec<(String, SymbolDef)> {
let mut scope = self.scope.write().unwrap();
scope.update_link_addresses(&self.proc_symbol, &self.linker);
scope.export()
}
*/
pub fn get_bytecode(mut self, ret: bool) -> (
Vec<(String, SymbolDef)>,
Vec<tisc::assembler::AssemblyWord>
) {
let frame_size = self.scope.read().unwrap().get_frame_size();
if frame_size > 0 {
let alloc_asm = tisc::Assembler::new()
.lit(frame_size as tisc::VM_Word).call("data-frame-alloc");
let drop_asm = tisc::Assembler::new()
.lit(frame_size as tisc::VM_Word).call("data-frame-drop");
pub fn into_asm(mut self, proc_symbol: &String) -> (Vec<(String, SymbolDef)>, Vec<(InputRegionTag, String)>, Vec<tisc::assembler::AssemblyWord>) { self.asm = alloc_asm.join( self.asm ).join( drop_asm );
let mut symbols = }
Arc::try_unwrap(self.symbols).ok().unwrap()
.into_inner().unwrap();
symbols.update_link_addresses( let main_section = self.asm.build();
proc_symbol,
//self.linker.add_procedure( &self.proc_symbol, main_section );
// ^--- this would insert the asm section at the end,
// we however need it an the beginning of the bytecode
// insert section at front
self.linker.next_addr += main_section.len() as i64;
for (name,section) in self.linker.symbols.iter_mut() {
section.addr += main_section.len() as i64;
}
self.linker.symbols.insert(
self.proc_symbol.clone(),
tisc::linker::Section { addr: 0, data: main_section }
);
// replace all symbol definitions from subroutines
// with relative LinkAddr`s
self.scope.write().unwrap().update_link_addresses(
&self.proc_symbol,
&self.linker &self.linker
); );
let data_frame_size = symbols.get_frame_size() as i64; (
self.scope.read().unwrap().export(),
let body = self.asm.build(); self.linker.link_relative( &self.proc_symbol ).expect("link error")
self.linker.add_procedure("__procedure_body__", body); )
let body_addr = self
.linker
.get_link_addr(&"__procedure_body__".into())
.unwrap();
let subroutines = self
.linker
.link_relative(&"__subroutines__".into())
.expect("link error");
let mut entry = tisc::Assembler::new();
if data_frame_size > 0 {
entry = entry.lit(data_frame_size).call("data-frame-alloc");
}
entry = entry.call_symbol(LinkAddr::Relative {
symbol: "__subroutines__".into(),
offset: body_addr,
});
if data_frame_size > 0 {
entry = entry.lit(data_frame_size).call("data-frame-drop");
}
let mut superlink = tisc::Linker::new();
superlink.add_procedure("", entry.build());
superlink.add_procedure("__subroutines__", subroutines);
symbols.update_link_addresses(
&proc_symbol,
&superlink
);
let mut symbol_exports = symbols.export();
let subroutines_addr = superlink.get_link_addr(&"__subroutines__".into()).unwrap();
for (name, def) in symbol_exports.iter_mut() {
match def {
SymbolDef::Procedure{ in_types:_, out_types:_, link_addr, export:_ } => {
match link_addr {
LinkAddr::Relative{ symbol, offset } => {
*offset += subroutines_addr;
}
LinkAddr::Absolute(addr) => {
*addr += subroutines_addr;
}
}
}
_ => {}
}
}
let bytecode = superlink.link_relative(proc_symbol).expect("link error");
(symbol_exports, self.diagnostics, bytecode)
}
pub fn parse_type(&self, s: &str) -> laddertypes::TypeTerm {
self.symbols.write().unwrap().parse(s).unwrap()
}
pub fn unparse_type(&self, t: &laddertypes::TypeTerm) -> String {
self.symbols.write().unwrap().unparse(t)
}
pub fn sugar_type(&self, t: laddertypes::TypeTerm) -> laddertypes::SugaredTypeTerm {
let mut symbols = self.symbols.clone();
t.sugar( &mut symbols )
}
pub fn desugar_type(&self, t: laddertypes::SugaredTypeTerm) -> laddertypes::TypeTerm {
let mut symbols = self.symbols.clone();
t.desugar( &mut symbols )
}
pub fn infer_type(&mut self,
expr: &mut LTExpr,
) -> TypeTag {
match expr {
LTExpr::Ascend { region, typ, expr } => {
let expr_type = self.infer_type(expr)?;
let sub_type = typ.clone()?;
/*
* todo: check potential overlap of typ with expr_type
*/
Ok(laddertypes::TypeTerm::Ladder(vec![
sub_type,
expr_type
]))
}
LTExpr::Descend { region, typ, expr } => {
let expr_type = self.infer_type(expr)?;
let super_type = typ.clone()?;
if expr_type.is_syntactic_subtype_of(&super_type).is_ok() {
Ok(super_type)
} else {
self.diagnostics.push(
(expr.get_region(),
format!("Type Error (descend):\n expected\n==> {}\n received\n==> {}\n",
self.unparse_type(&super_type),
self.unparse_type(&expr_type)
)));
return Err(TypeError::Mismatch {
expected: expr_type,
received: super_type
});
}
}
LTExpr::WordLiteral{ region, val } => {
Ok(self.parse_type(
"_2^64 ~ machine.UInt64 ~ machine.Word"
))
}
LTExpr::StringLiteral{ region, value } => {
Ok(self.parse_type(
"<Seq Char ~ Unicode ~ _2^32 ~ machine.UInt64>
~ <TermArray 0 machine.UInt64 ~ machine.Word>"
))
}
LTExpr::Symbol { region, typ, symbol } => {
let scope = self.symbols.read().unwrap();
if let Some(sdef) = scope.get(symbol) {
drop(scope);
Ok(sdef.get_type(&mut self.symbols.clone()))
} else {
Err(TypeError::NoSymbol)
}
}
LTExpr::Abstraction { region, args, body } => {
let mut f = Vec::new();
let mut body_scope = Scope::with_parent( &self.symbols );
for (region, name, typ) in args {
if let Some(typ) = typ {
let typ = typ.clone()?;
let sugar_typ = typ.clone().sugar(&mut body_scope);
f.push( sugar_typ );
body_scope.write().unwrap().declare_var(name.clone(), typ.clone());
}
}
let body_type = self.infer_type(body)?;
f.push( self.sugar_type(body_type) );
Ok(self.desugar_type(
laddertypes::SugaredTypeTerm::Func(f)
))
}
LTExpr::Application { region, typ, head, body } => {
let mut head_type = self.infer_type(head)?;
let mut args = body.into_iter();
let mut result_type = head_type;
let mut sugared_result_type = self.sugar_type(result_type);
while let laddertypes::SugaredTypeTerm::Func(mut f_types) = sugared_result_type {
sugared_result_type = f_types.pop().unwrap();
for (argi, expected_arg_type) in f_types.iter().enumerate() {
if let Some(arg) = args.next() {
let expected_arg_type = self.desugar_type(expected_arg_type.clone());
// check subtype
let received_arg_type = self.infer_type(arg)?;
if ! received_arg_type.is_syntactic_subtype_of(&expected_arg_type).is_ok() {
self.diagnostics.push(
(arg.get_region(),
format!("Type Error (arg {}):\n{}{}\n{}{}\n",
argi,
"expected\n::: ".bright_white(),
expected_arg_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1),
"received\n::: ".bright_white(),
received_arg_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1)
)));
return Err(TypeError::Mismatch {
expected: expected_arg_type,
received: received_arg_type
});
}
} else {
// partial application.
f_types.push(sugared_result_type);
result_type = self.desugar_type(laddertypes::SugaredTypeTerm::Func(f_types[argi..].into_iter().cloned().collect()));
return Ok(result_type);
}
}
}
result_type = self.desugar_type(sugared_result_type);
Ok(result_type)
}
LTExpr::Branch { region, condition, if_expr, else_expr } => {
let received_cond_type = self.infer_type(condition)?;
let expected_cond_type = self.symbols.parse("Bool ~ machine.Word").unwrap();
if received_cond_type.is_syntactic_subtype_of(&expected_cond_type).is_ok() {
let if_expr_type = self.infer_type(if_expr)?;
let else_expr_type = self.infer_type(else_expr)?;
if if_expr_type.is_syntactic_subtype_of(&else_expr_type).is_ok() {
Ok(else_expr_type)
} else if else_expr_type.is_syntactic_subtype_of(&if_expr_type).is_ok() {
Ok(if_expr_type)
} else {
self.diagnostics.push(
(region.clone(),
format!("Type Error (if/else):\n{}{}\n{}{}\n",
"if branch\n::: ".bright_white(),
if_expr_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1),
"else branch\n::: ".bright_white(),
else_expr_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1)))
);
Err(TypeError::Mismatch {
expected: if_expr_type,
received: else_expr_type
})
}
} else {
self.diagnostics.push(
(condition.get_region(),
format!("Type Error (condition):\n{}{}\n{}{}\n",
"expected\n::: ".bright_white(),
expected_cond_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1),
"received\n::: ".bright_white(),
received_cond_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1)))
);
Err(TypeError::Mismatch {
expected: expected_cond_type,
received: received_cond_type
})
}
}
LTExpr::ExportBlock{ region, statements } |
LTExpr::Block{ region, statements } => {
let mut types = Vec::new();
for s in statements {
match s {
Statement::LetAssign{ name_region, typ, var_id, val_expr } => {
let typ = self.infer_type(val_expr)?;
match typ {
laddertypes::TypeTerm::App(mut args) => {
if args.len() > 1 {
if args[0] == self.parse_type("Func") {
args.remove(0);
let out_type = args.pop().unwrap();
let out_types = match out_type.clone() {
laddertypes::TypeTerm::App(mut oa) => {
if oa.len() > 1 {
if oa.remove(0) == self.parse_type("Struct") {
oa
} else {
vec![ out_type ]
}
} else {
vec![ out_type ]
}
}
_ => {
vec![ out_type ]
}
};
let in_types = args;
self.symbols.write().unwrap()
.declare_proc(
var_id.clone(),
in_types,
out_types,
true
);
} else {
// eprintln!("DEFINE a VARIABLE! (1)");
}
} else {
// eprintln!("DEFINE A VARIABLE (2)");
}
}
t => {
// eprintln!("DEFINE A VARIABLE (3)");
let id = self
.symbols
.write()
.unwrap()
.declare_var(var_id.clone(), t);
}
}
},
Statement::Return(expr) |
Statement::Expr(expr) => {
let t = self.infer_type(expr)?;
let st = self.sugar_type(t);
if st != laddertypes::SugaredTypeTerm::Struct(vec![]) {
types.push(st);
}
}
Statement::WhileLoop { condition, body } => {
let received_cond_type = self.infer_type(condition)?;
let expected_cond_type = self.symbols.parse("Bool ~ machine.Word").unwrap();
if received_cond_type.is_syntactic_subtype_of(&expected_cond_type).is_ok() {
let body_type = self.infer_type(&mut LTExpr::Block{ region: InputRegionTag::default(), statements: body.clone() })?;
let st = self.sugar_type(body_type);
if st != laddertypes::SugaredTypeTerm::Struct(vec![]) {
types.push(st);
}
} else {
self.diagnostics.push(
(condition.get_region(),
format!("Type Error (condition):\n{}{}\n{}{}\n",
"expected\n::: ".bright_white(),
expected_cond_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1),
"received\n::: ".bright_white(),
received_cond_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1)))
);
return Err(TypeError::Mismatch {
expected: expected_cond_type,
received: received_cond_type
});
}
}
Statement::Assignment { name_region, var_id, val_expr } => {
let received_type = self.infer_type(val_expr)?;
let expected_type = self.symbols.write().unwrap().get_type(var_id).unwrap();
if ! received_type.is_syntactic_subtype_of(&expected_type).is_ok() {
self.diagnostics.push(
(name_region.clone(),
format!("Type Error (assign):\n{}{}\n{}{}\n",
"expected\n::: ".bright_white(),
expected_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1),
"received\n::: ".bright_white(),
received_type.clone().sugar(&mut self.symbols.clone()).pretty(&mut self.symbols.clone(), 1)))
);
}
}
}
}
if types.len() == 1 {
Ok(self.desugar_type(types.pop().unwrap()))
} else {
Ok(self.desugar_type(laddertypes::SugaredTypeTerm::Struct(types)))
}
}
}
} }
pub fn compile_statement(mut self, statement: &Statement, enable_export: bool) -> Self { pub fn compile_statement(mut self, statement: &Statement, enable_export: bool) -> Self {
match statement { match statement {
Statement::Assignment { name_region, var_id, val_expr } => { Statement::Assignment { name_region, var_id, val_expr } => {
self = self.compile(val_expr); self = self.compile_expr(val_expr);
match self.symbols.read().unwrap().get(var_id) { match self.scope.read().unwrap().get(var_id) {
Some(SymbolDef::FrameRef { typ, stack_ref }) => { Some(SymbolDef::FrameRef { typ, stack_ref }) => {
self.asm = self.asm.lit(stack_ref).call("data-frame-set"); self.asm = self.asm.lit(stack_ref).call("data-frame-set");
} }
@ -429,9 +106,8 @@ impl ProcedureCompiler {
out_types, out_types,
link_addr, link_addr,
export export
}) => { }) => {
self.asm = self self.asm = self.asm
.asm
.call(var_id.as_str()) .call(var_id.as_str())
.inst(tisc::VM_Instruction::Store); .inst(tisc::VM_Instruction::Store);
} }
@ -448,60 +124,62 @@ impl ProcedureCompiler {
typ, typ,
var_id, var_id,
val_expr, val_expr,
} => match val_expr { } => {
LTExpr::Abstraction { region:_, args: _, body: _ } => { let val_type = self.scope.read().unwrap()
let (exports, mut diagnostics, lambda_procedure) = ProcedureCompiler::new(&self.symbols) .get(var_id).unwrap()
.compile(val_expr) .get_type(&mut self.scope.clone());
.into_asm(var_id); let val_type = val_type.sugar(&mut self.scope.clone());
match val_type {
laddertypes::SugaredTypeTerm::Func(mut f_types) => {
let mut c = ProcedureCompiler::new(
var_id.clone(),
self.scope.clone()
);
c = c.compile_expr( val_expr );
self.diagnostics.append(&mut c.diagnostics);
self.diagnostics.append(&mut diagnostics); let (symbols,code) = c.get_bytecode( true );
eprintln!("LET assign compiled {}", var_id);
for (i,l) in tisc::assembler::disassemble( &code ).iter().enumerate() {
eprintln!("{}+{} ... {}", var_id, i, l);
}
self.linker.add_procedure(var_id, code);
self.linker.add_procedure(var_id, lambda_procedure); /*
let out_types = vec![ f_types.pop().unwrap().desugar(&mut self.scope.clone()) ];
let in_types = f_types.into_iter().map(|t| t.desugar(&mut self.scope.clone())).collect();
let offset = self.linker.get_link_addr(var_id).unwrap(); self.scope.write().unwrap().declare_proc(
var_id.clone(),
in_types,
out_types,
true
);
*/
}
// forward already exported symbols _ => {
if enable_export { self = self.compile_statement(&Statement::Assignment {
self.symbols.write().unwrap().import( exports ); name_region: *name_region,
var_id: var_id.clone(),
val_expr: val_expr.clone(),
}, false);
} }
} }
_ => {
self = self.compile_statement(&Statement::Assignment {
name_region: *name_region,
var_id: var_id.clone(),
val_expr: val_expr.clone(),
}, false);
}
},
Statement::WhileLoop { condition, body } => {
let asm = self.asm;
self.asm = tisc::Assembler::new();
self = self.compile(condition);
let cond_asm = self.asm;
self.asm = tisc::Assembler::new();
for statement in body.into_iter() {
self = self.compile_statement(statement, false);
}
let body_asm = self.asm;
self.asm = asm;
self.asm = self.asm.while_loop(cond_asm, body_asm);
} }
Statement::Expr(expr) => { Statement::Expr(expr) => {
self = self.compile(expr); self = self.compile_expr(expr);
} }
Statement::Return(expr) => { Statement::Return(expr) => {
self = self.compile(expr); self = self.compile_expr(expr);
} }
} }
self self
} }
pub fn compile(mut self, expr: &LTExpr) -> Self { pub fn compile_expr(mut self, expr: &LTExpr) -> Self {
match expr { match expr {
LTExpr::Symbol { region, typ, symbol } => match self.symbols.read().unwrap().get(symbol) { LTExpr::Symbol { region, typ, symbol } => match self.scope.read().unwrap().get(symbol) {
Some(SymbolDef::FrameRef { typ, stack_ref }) => { Some(SymbolDef::FrameRef { typ, stack_ref }) => {
self.asm = self.asm.lit(stack_ref).call("data-frame-get"); self.asm = self.asm.lit(stack_ref).call("data-frame-get");
} }
@ -532,34 +210,10 @@ impl ProcedureCompiler {
self.asm = self.asm.lit(*val); self.asm = self.asm.lit(*val);
} }
LTExpr::Ascend { region, typ, expr } => { LTExpr::Ascend { region, typ, expr } => {
self = self.compile(expr); self = self.compile_expr(expr);
} }
LTExpr::Descend { region, typ, expr } => { LTExpr::Descend { region, typ, expr } => {
self = self.compile(expr); self = self.compile_expr(expr);
}
LTExpr::Application { region, typ, head, body } => {
for arg in body.iter().rev() {
self = self.compile(arg);
}
self = self.compile(head);
}
LTExpr::Abstraction { region, args, body } => {
for (region, arg_name, arg_type) in args.iter() {
if let Some(Ok(typeterm)) = arg_type {
let id = self
.symbols
.write()
.unwrap()
.declare_var(arg_name.clone(), typeterm.clone());
self.asm = self.asm.lit(id).call("data-frame-set");
} else {
self.diagnostics.push((
region.clone(),
format!("invalid type {:?} for argument {}", arg_type, arg_name)
));
}
}
self = self.compile(body);
} }
LTExpr::Branch { LTExpr::Branch {
region, region,
@ -567,29 +221,112 @@ impl ProcedureCompiler {
if_expr, if_expr,
else_expr, else_expr,
} => { } => {
self = self.compile(condition); self = self.compile_expr(condition);
let asm = self.asm; let asm = self.asm;
self.asm = tisc::Assembler::new(); self.asm = tisc::Assembler::new();
self = self.compile(if_expr); self = self.compile_expr(if_expr);
let if_asm = self.asm; let if_asm = self.asm;
self.asm = tisc::Assembler::new(); self.asm = tisc::Assembler::new();
self = self.compile(else_expr); self = self.compile_expr(else_expr);
let else_asm = self.asm; let else_asm = self.asm;
self.asm = asm; self.asm = asm;
self.asm = self.asm.branch(if_asm, else_asm); self.asm = self.asm.branch(if_asm, else_asm);
} }
LTExpr::Block { region, statements } => { LTExpr::WhileLoop { region, condition, body } => {
for s in statements.iter() { let asm = self.asm;
self = self.compile_statement(s, false);
} self.asm = tisc::Assembler::new();
self = self.compile_expr(condition);
let cond_asm = self.asm;
self.asm = tisc::Assembler::new();
self = self.compile_expr(body);
let body_asm = self.asm;
self.asm = asm;
self.asm = self.asm.while_loop(cond_asm, body_asm);
} }
LTExpr::ExportBlock{ region, statements } => { LTExpr::Application { region, typ, head, body } => {
for s in statements.iter() { for arg in body.iter().rev() {
self = self.compile_statement(s, true); self = self.compile_expr(arg);
} }
self = self.compile_expr(head);
}
LTExpr::Abstraction { region, scope, args, body } => {
let mut abs_compiler = ProcedureCompiler::new("__abs__".into(), scope.clone());
for (region, arg_name, arg_type) in args.iter() {
match scope.read().unwrap().get(arg_name) {
Some(SymbolDef::FrameRef{ typ, stack_ref }) => {
eprintln!("Arg {} stack ref = {}", arg_name, stack_ref);
// TODO: aknowledge actual size of arguments
// let arg_size = typ.get_size()
let arg_size = 1;
for i in 0..arg_size {
abs_compiler.asm = abs_compiler.asm
.lit(stack_ref + i)
.call("data-frame-set");
}
}
_ => {
self.diagnostics.push(
(region.clone(),
format!("argument variable is not a frame-ref"))
);
}
}
}
abs_compiler = abs_compiler.compile_expr( body );
let (abs_symbols, mut abs_code) = abs_compiler.get_bytecode( false );
for (s,def) in abs_symbols.iter() {
eprintln!("{} = {:?}", s, def);
}
for (i, l) in tisc::assembler::disassemble(&abs_code).into_iter().enumerate() {
eprintln!("__abs__+{} .. {}", i, l);
}
self.asm.words.append( &mut abs_code );
/*
self.linker.add_procedure(
"__abs__".into(),
abs_code
);*/
}
LTExpr::Block { region, scope, statements } => {
let mut block_compiler = ProcedureCompiler::new(
"__block__".into(),
scope.clone()
);
for stmnt in statements.iter() {
block_compiler = block_compiler.compile_statement( stmnt, true );
}
let (block_symbols, mut block_code) = block_compiler.get_bytecode( true );
eprintln!("BLOCK compiler:");
for (s,def) in block_symbols.iter() {
eprintln!("{} = {:?}", s, def);
}
for (i,l) in tisc::assembler::disassemble( &block_code ).into_iter().enumerate() {
eprintln!("block+{} .. {}", i, l);
}
self.linker.
self.scope.write().unwrap().import(
block_symbols
);
self.asm.words.append(&mut block_code);
}
LTExpr::ExportBlock{ region, scope, statements } => {
} }
} }
self self
} }
} }

View file

@ -73,6 +73,7 @@ impl SymbolDef {
/* Describes a lexical scope of symbols /* Describes a lexical scope of symbols
*/ */
#[derive(Clone, Debug)]
pub struct Scope { pub struct Scope {
/* definition of runtime symbols /* definition of runtime symbols
*/ */
@ -147,15 +148,16 @@ impl Scope {
s s
} }
pub fn export(self) -> Vec<(String, SymbolDef)> { pub fn export(&self) -> Vec<(String, SymbolDef)> {
self.symbols self.symbols
.into_iter() .iter()
.filter(|(name, def)| .filter(|(name, def)|
match def { match def {
SymbolDef::Procedure { in_types:_, out_types:_, link_addr:_, export } => *export, SymbolDef::Procedure { in_types:_, out_types:_, link_addr:_, export } => *export,
_ => false _ => false
} }
) )
.map(|(n,d)| (n.clone(), d.clone()))
.collect() .collect()
} }
@ -207,7 +209,7 @@ impl Scope {
for (name, def) in self.symbols.iter_mut() { for (name, def) in self.symbols.iter_mut() {
if let Some(offset) = linker.get_link_addr( name ) { if let Some(offset) = linker.get_link_addr( name ) {
match def { match def {
SymbolDef::Procedure { SymbolDef::Procedure {
in_types:_,out_types:_, in_types:_,out_types:_,
link_addr, link_addr,
export:_ export:_

319
lib-ltcore/src/typing.rs Normal file
View file

@ -0,0 +1,319 @@
use {
crate::{
lexer::InputRegionTag,
expr::{LTExpr, Statement, TypeTag, TypeError, TypeErrorKind},
symbols::{Scope, SymbolDef},
},
std::{
ops::Deref,
sync::{Arc, RwLock},
},
laddertypes::{
parser::ParseLadderType,
unparser::UnparseLadderType,
dict::TypeDict
},
tisc::{assembler::AssemblyWord, linker::LinkAddr},
tiny_ansi::TinyAnsi
};
impl LTExpr {
/*
pub fn get_type(&self) -> TypeTag {
Err(TypeError::Todo)
}*/
pub fn infer_type(&self, scope: &Arc<RwLock<Scope>>) -> TypeTag
{
match self {
LTExpr::WordLiteral{ region, val } => {
Ok(scope.write().unwrap().parse(
"_2^64 ~ machine.UInt64 ~ machine.Word"
).unwrap())
}
LTExpr::StringLiteral{ region, value } => {
Ok(scope.write().unwrap().parse(
"<Seq Char ~ Unicode ~ _2^32 ~ _2^64 ~ machine.UInt64>
~ <TermArray 0 machine.UInt64 ~ machine.Word>"
).unwrap())
}
LTExpr::Symbol { region, typ, symbol } => {
let mut s = scope.write().unwrap();
if let Some(sdef) = s.get(symbol) {
Ok(sdef.get_type(&mut *s))
} else {
let region = region.clone();
Err(vec![ TypeError{ region, kind: TypeErrorKind::NoSymbol } ])
}
}
LTExpr::Ascend { region, typ, expr } => {
let expr_type = expr.infer_type( scope )?;
let sub_type = typ.clone();
/*
* todo: check potential overlap of typ with expr_type
*/
if let Ok(i) = sub_type.is_syntactic_subtype_of(&expr_type) {
let mut lnf = expr_type.get_lnf_vec();
let mut sub_lnf = sub_type.get_lnf_vec();
for x in 0..i {
lnf.insert(x, sub_lnf.remove(0));
}
let result_type = laddertypes::TypeTerm::Ladder(lnf);
Ok(result_type)
} else {
Ok(laddertypes::TypeTerm::Ladder(vec![
sub_type,
expr_type
]))
}
}
LTExpr::Descend { region, typ, expr } => {
let expr_type = expr.infer_type(scope)?;
let super_type = typ.clone();
if let Ok(i) = expr_type.is_syntactic_subtype_of(&super_type) {
let lnf = expr_type.get_lnf_vec();
let result_type = laddertypes::TypeTerm::Ladder(lnf[i..].into_iter().cloned().collect());
Ok(result_type)
} else {
return Err(vec![ TypeError{
region: region.clone(),
kind: TypeErrorKind::ArgTypeMismatch {
expected: expr_type,
received: super_type
}
} ]);
}
}
LTExpr::Abstraction { region, scope, args, body } => {
let mut f = Vec::new();
for (region, name, typ) in args {
if let Some(typ) = typ {
let typ = typ.clone()?;
let sugar_typ = typ.clone().sugar(&mut *scope.write().unwrap());
f.push( sugar_typ );
scope.write().unwrap().declare_var(name.clone(), typ.clone());
}
}
let body_type = body.infer_type( scope )?;
f.push( body_type.sugar(&mut *scope.write().unwrap()) );
Ok(laddertypes::SugaredTypeTerm::Func(f).desugar( &mut *scope.write().unwrap() ))
}
LTExpr::Application{ region, typ, head, body } => {
let mut head_type = head.infer_type(scope)?;
let mut args = body.into_iter();
let mut result_type = head_type;
let mut sugared_result_type = result_type.sugar(&mut *scope.write().unwrap());
let mut errors = Vec::new();
while let laddertypes::SugaredTypeTerm::Func(mut f_types) = sugared_result_type {
sugared_result_type = f_types.pop().unwrap();
for (argi, expected_arg_type) in f_types.iter().enumerate() {
if let Some(arg) = args.next() {
let expected_arg_type = expected_arg_type.clone().desugar(&mut *scope.write().unwrap());
// check subtype
let received_arg_type = arg.infer_type(scope)?;
if ! received_arg_type.is_syntactic_subtype_of(&expected_arg_type).is_ok() {
errors.push(TypeError{
region: arg.get_region(),
kind: TypeErrorKind::ArgTypeMismatch {
expected: expected_arg_type,
received: received_arg_type
}
});
}
} else {
// partial application.
f_types.push(sugared_result_type);
sugared_result_type = laddertypes::SugaredTypeTerm::Func(
f_types[argi .. ].into_iter().cloned().collect()
);
// todo examine stack ..
return
if errors.len() == 0 {
result_type = sugared_result_type.desugar(&mut *scope.write().unwrap());
Ok(result_type)
} else {
Err(errors)
};
}
}
}
while let Some(arg) = args.next() {
errors.push(TypeError{
region: arg.get_region(),
kind: TypeErrorKind::SuperfluousArgument
});
}
if errors.len() == 0 {
result_type = sugared_result_type.desugar(&mut *scope.write().unwrap());
Ok(result_type)
} else {
Err(errors)
}
}
LTExpr::Branch { region, condition, if_expr, else_expr } => {
let received_cond_type = condition.infer_type(scope)?;
let expected_cond_type = scope.write().unwrap().parse("Bool ~ machine.Word").unwrap();
if received_cond_type.is_syntactic_subtype_of(&expected_cond_type).is_ok() {
let if_expr_type = if_expr.infer_type(scope)?;
let else_expr_type = else_expr.infer_type(scope)?;
if if_expr_type.is_syntactic_subtype_of(&else_expr_type).is_ok() {
Ok(else_expr_type)
} else if else_expr_type.is_syntactic_subtype_of(&if_expr_type).is_ok() {
Ok(if_expr_type)
} else {
Err(vec![TypeError{
region: region.clone(),
kind: TypeErrorKind::BranchMismatch {
if_branch: if_expr_type,
else_branch: else_expr_type
}
}])
}
} else {
Err(vec![ TypeError{
region: condition.get_region(),
kind: TypeErrorKind::ArgTypeMismatch {
expected: expected_cond_type,
received: received_cond_type
}
}])
}
}
LTExpr::WhileLoop { region, condition, body } => {
let received_cond_type = condition.infer_type(scope)?;
let expected_cond_type = scope.write().unwrap().parse("Bool ~ machine.Word").unwrap();
if received_cond_type.is_syntactic_subtype_of(&expected_cond_type).is_ok() {
let body_type = body.infer_type(scope)?;
let body_type = body_type.sugar(&mut scope.clone());
let loop_type = laddertypes::SugaredTypeTerm::Seq(vec![ body_type ]);
Ok(loop_type.desugar(&mut scope.clone()))
} else {
return Err(vec![ TypeError{
region: condition.get_region(),
kind: TypeErrorKind::ArgTypeMismatch {
expected: expected_cond_type,
received: received_cond_type
}
}]);
}
}
LTExpr::ExportBlock{ region, scope, statements } |
LTExpr::Block{ region, scope, statements } => {
let mut types = Vec::new();
for s in statements {
match s.infer_type(scope) {
Ok(Some(t)) => {
if !t.is_empty() {
types.insert(0, t);
}
}
Ok(None) => {}
Err(e) => {
return Err(e);
}
}
}
Ok(
if types.len() == 1 { types.pop().unwrap() }
else { laddertypes::SugaredTypeTerm::Struct(types) }
.desugar(&mut scope.clone())
)
}
}
}
}
impl Statement {
pub fn infer_type(&self, scope: &Arc<RwLock<Scope>>) -> Result< Option<laddertypes::SugaredTypeTerm> , Vec<TypeError> > {
match self {
Statement::LetAssign{ name_region, typ, var_id, val_expr } => {
let typ = val_expr.infer_type( scope )?;
match typ.clone().sugar( &mut scope.clone() ) {
laddertypes::SugaredTypeTerm::Func(mut args) => {
let out_type = args.pop().unwrap();
let out_types =
match out_type.clone() {
laddertypes::SugaredTypeTerm::Struct(oa) => oa.into_iter().map(|t|t.desugar(&mut scope.clone())).collect(),
_ => vec![ out_type.desugar(&mut scope.clone()) ]
};
let in_types = args.into_iter().map(|t| t.desugar(&mut scope.clone())).collect();
scope.write().unwrap()
.declare_proc(
var_id.clone(),
in_types,
out_types,
true
);
return Ok(None);
}
_ => {
let id = scope.write().unwrap().declare_var(var_id.clone(), typ);
eprintln!("TYPING declare var = {}", id);
Ok(None)
}
}
},
Statement::Return(expr) |
Statement::Expr(expr) => {
let t = expr.infer_type(scope)?;
if t != laddertypes::TypeTerm::App(vec![]) {
let st = t.sugar(&mut scope.clone());
Ok(Some(st))
} else {
Ok(None)
}
}
Statement::Assignment { name_region, var_id, val_expr } => {
let received_type = val_expr.infer_type(scope)?;
let expected_type = scope.write().unwrap().get_type(var_id).unwrap();
if ! received_type.is_syntactic_subtype_of(&expected_type).is_ok() {
return Err(vec![ TypeError{
region: val_expr.get_region(),
kind: TypeErrorKind::AssignMismatch {
expected: expected_type,
received: received_type
}
}]);
} else {
Ok(None)
}
}
}
}
}

View file

@ -51,23 +51,35 @@ fn main() {
match ltcore::parser::parse_expr( &mut main_scope, &mut program_tokens ) { match ltcore::parser::parse_expr( &mut main_scope, &mut program_tokens ) {
Ok( mut ast ) => { Ok( mut ast ) => {
let mut compiler = ProcedureCompiler::new(&main_scope); let mut compiler = ProcedureCompiler::new(path.clone(), main_scope.clone());
match compiler.infer_type(&mut ast) { match ast.infer_type(&main_scope) {
Ok(mut t) => { Ok(mut t) => {
eprintln!("Typecheck {}", "OK".green().bold());
t = t.normalize(); t = t.normalize();
t = t.param_normalize(); t = t.param_normalize();
let mut tc = compiler.symbols.clone(); let mut tc = main_scope.clone();
eprintln!("Expr has type:\n================\n{}\n================\n", t.sugar(&mut tc).pretty(&mut tc, 0)); eprintln!( "{}", t.sugar(&mut tc).pretty(&tc,0) );
} }
Err(e) => { Err(type_errs) => {
eprintln!("{} [{:?}]", "Type Error".red(), e); for e in type_errs.iter() {
crate::diagnostic::print_diagnostic(
path.as_str(),
e.region,
e.kind.fmt(&mut main_scope.clone())
);
}
eprintln!("----------------------------------");
eprintln!("{} ({} errors)", "Typecheck failed".bright_red().bold(), type_errs.len());
return;
} }
} }
let (exports, diagnostics, proc_code) = compiler compiler = compiler.compile_expr(&ast);
.compile(&ast) let diagnostics = compiler.diagnostics.clone();
.into_asm(&path); let (exports, proc_code) = compiler.get_bytecode(false);
for (region, message) in diagnostics { for (region, message) in diagnostics {
crate::diagnostic::print_diagnostic( crate::diagnostic::print_diagnostic(
@ -76,7 +88,8 @@ fn main() {
format!("{}", message) format!("{}", message)
); );
} }
eprintln!("{} {}", "Compiled".green(), path.bold()); eprintln!("{} {}", "Compiled".green(), path.bold());
for (name, def) in exports.iter() { for (name, def) in exports.iter() {
eprintln!("export {}:", name.yellow().bold()); eprintln!("export {}:", name.yellow().bold());
@ -93,6 +106,10 @@ fn main() {
/* link assembly-program to symbols /* link assembly-program to symbols
*/ */
eprintln!("generated bytecode ({})", proc_code.len() );
for (i,l) in tisc::assembler::disassemble(&proc_code).iter().enumerate() {
eprintln!("{} .... {}", i,l);
}
linker.add_procedure(path.as_str(), proc_code); linker.add_procedure(path.as_str(), proc_code);
} }
Err( (region, parse_error) ) => { Err( (region, parse_error) ) => {

1
ltcc/test.lt Normal file
View file

@ -0,0 +1 @@

BIN
ltcc/test.lt.o Normal file

Binary file not shown.

View file

@ -35,8 +35,10 @@ fn main() {
linker.import( source_path, bincode::deserialize_from( input ).expect("") ); linker.import( source_path, bincode::deserialize_from( input ).expect("") );
} }
let entry_addr = linker.get_link_addr(&args.entry) let entry_addr = linker.get_link_addr(&args.entry).unwrap_or(0);
/*
.expect(&format!("cant find entry symbol '{}'", args.entry)); .expect(&format!("cant find entry symbol '{}'", args.entry));
*/
let bytecode = linker.link_total().expect("Link error:"); let bytecode = linker.link_total().expect("Link error:");
eprintln!("{} ({} bytes)", "Loaded bytecode.".green(), bytecode.len()); eprintln!("{} ({} bytes)", "Loaded bytecode.".green(), bytecode.len());