ladder-calculus/coq/morph.v

103 lines
3 KiB
Coq
Raw Normal View History

2024-09-04 12:41:00 +02:00
From Coq Require Import Strings.String.
Require Import terms.
Require Import subst.
Require Import equiv.
Require Import subtype.
Require Import context.
2024-09-04 12:41:00 +02:00
Include Terms.
Include Subst.
Include Equiv.
Include Subtype.
Include Context.
2024-09-04 12:41:00 +02:00
Module Morph.
(* Given a context, there is a morphism path from τ to τ' *)
Reserved Notation "Γ '|-' σ '~>' τ" (at level 101, σ at next level, τ at next level).
2024-09-04 12:41:00 +02:00
Inductive morphism_path : context -> type_term -> type_term -> Prop :=
| M_Sub : forall Γ τ τ',
(τ :<= τ') ->
(Γ |- τ ~> τ')
2024-09-04 12:41:00 +02:00
| M_Single : forall Γ h τ τ',
2024-09-04 12:41:00 +02:00
(context_contains Γ h (type_morph τ τ')) ->
(Γ |- τ ~> τ')
2024-09-04 12:41:00 +02:00
| M_Chain : forall Γ τ τ' τ'',
(Γ |- τ ~> τ') ->
(Γ |- τ' ~> τ'') ->
(Γ |- τ ~> τ'')
2024-09-04 12:41:00 +02:00
2024-09-08 15:29:47 +02:00
| M_Lift : forall Γ σ τ τ',
(Γ |- τ ~> τ') ->
(Γ |- (type_ladder σ τ) ~> (type_ladder σ τ'))
| M_MapSeq : forall Γ τ τ',
(Γ |- τ ~> τ') ->
(Γ |- (type_spec (type_id "Seq") τ) ~> (type_spec (type_id "Seq") τ'))
2024-09-04 12:41:00 +02:00
where "Γ '|-' s '~>' t" := (morphism_path Γ s t).
2024-09-04 12:41:00 +02:00
Inductive translate_morphism_path : context -> type_term -> type_term -> expr_term -> Prop :=
| Translate_Subtype : forall Γ τ τ',
(τ :<= τ') ->
(translate_morphism_path Γ τ τ'
(expr_morph "x" τ (expr_var "x")))
| Translate_Lift : forall Γ σ τ τ' m,
(Γ |- τ ~> τ') ->
(translate_morphism_path Γ τ τ' m) ->
(translate_morphism_path Γ (type_ladder σ τ) (type_ladder σ τ')
(expr_morph "x" (type_ladder σ τ)
(expr_ascend σ (expr_app m (expr_descend τ (expr_var "x"))))))
| Translate_Single : forall Γ h τ τ',
(context_contains Γ h (type_morph τ τ')) ->
(translate_morphism_path Γ τ τ' (expr_var h))
| Translate_Chain : forall Γ τ τ' τ'' m1 m2,
(translate_morphism_path Γ τ τ' m1) ->
(translate_morphism_path Γ τ' τ'' m2) ->
(translate_morphism_path Γ τ τ''
(expr_morph "x" τ (expr_app m2 (expr_app m1 (expr_var "x")))))
| Translate_MapSeq : forall Γ τ τ' m,
(translate_morphism_path Γ τ τ' m) ->
(translate_morphism_path Γ
(type_spec (type_id "Seq") τ)
(type_spec (type_id "Seq") τ')
(expr_morph "xs"
(type_spec (type_id "Seq") τ)
(expr_app (expr_app (expr_ty_app (expr_ty_app
(expr_var "map") τ) τ') m)
(expr_var "xs"))))
.
Example morphism_paths :
(ctx_assign "degrees-to-turns" [< $"Angle"$~$"Degrees"$~$""$ ->morph $"Angle"$~$"Turns"$~$""$ >]
(ctx_assign "turns-to-radians" [< $"Angle"$~$"Turns"$~$""$ ->morph $"Angle"$~$"Radians"$~$""$ >]
ctx_empty))
|- [< <$"Seq"$ $"Hue"$~$"Angle"$~$"Degrees"$~$""$> >]
~> [< <$"Seq"$ $"Hue"$~$"Angle"$~$"Radians"$~$""$> >]
.
Proof.
intros.
apply M_MapSeq.
apply M_Lift.
apply M_Chain with (τ':=[<$"Angle"$~$"Turns"$~$""$>]).
apply M_Single with (h:="degrees-to-turns"%string).
apply C_take.
apply M_Single with (h:="turns-to-radians"%string).
apply C_shuffle.
apply C_take.
Qed.
End Morph.