ladder-calculus/coq/typing.v

284 lines
8 KiB
Coq
Raw Normal View History

(* This module defines the typing relation
* where each expression is assigned a type.
*)
From Coq Require Import Strings.String.
Require Import terms.
Require Import subst.
2024-08-21 20:04:20 +02:00
Require Import equiv.
Require Import subtype.
Require Import context.
Require Import morph.
2024-08-21 20:04:20 +02:00
Include Terms.
Include Subst.
2024-08-21 20:04:20 +02:00
Include Equiv.
Include Subtype.
Include Context.
Include Morph.
Module Typing.
2024-08-21 20:04:20 +02:00
(** Typing Derivation *)
2024-07-27 13:30:12 +02:00
Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0).
2024-07-27 13:30:12 +02:00
Inductive expr_type : context -> expr_term -> type_term -> Prop :=
| T_Var : forall Γ x τ,
(context_contains Γ x τ) ->
(Γ |- (expr_var x) \is τ)
2024-07-27 13:30:12 +02:00
| T_Let : forall Γ s σ t τ x,
2024-07-27 13:30:12 +02:00
(Γ |- s \is σ) ->
((ctx_assign x σ Γ) |- t \is τ) ->
(Γ |- (expr_let x s t) \is τ)
2024-07-27 13:30:12 +02:00
| T_TypeAbs : forall Γ e τ α,
2024-07-27 13:30:12 +02:00
Γ |- e \is τ ->
Γ |- (expr_ty_abs α e) \is (type_univ α τ)
| T_TypeApp : forall Γ α e σ τ τ',
2024-07-27 13:30:12 +02:00
Γ |- e \is (type_univ α τ) ->
(type_subst1 α σ τ τ') ->
Γ |- (expr_ty_app e σ) \is τ'
2024-07-27 13:30:12 +02:00
| T_Abs : forall Γ x σ t τ,
((ctx_assign x σ Γ) |- t \is τ) ->
(Γ |- (expr_abs x σ t) \is (type_fun σ τ))
2024-09-04 12:39:15 +02:00
| T_MorphAbs : forall Γ x σ e τ,
((ctx_assign x σ Γ) |- e \is τ) ->
2024-09-04 12:39:15 +02:00
Γ |- (expr_morph x σ e) \is (type_morph σ τ)
| T_App : forall Γ f a σ' σ τ,
(Γ |- f \is (type_fun σ τ)) ->
(Γ |- a \is σ') ->
(Γ |- σ' ~> σ) ->
(Γ |- (expr_app f a) \is τ)
2024-09-04 12:39:15 +02:00
| T_MorphFun : forall Γ f σ τ,
Γ |- f \is (type_morph σ τ) ->
Γ |- f \is (type_fun σ τ)
| T_Ascend : forall Γ e τ τ',
(Γ |- e \is τ) ->
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ))
2024-09-04 12:39:15 +02:00
| T_DescendImplicit : forall Γ x τ τ',
2024-08-21 20:04:20 +02:00
Γ |- x \is τ ->
(τ :<= τ') ->
Γ |- x \is τ'
| T_Descend : forall Γ x τ τ',
Γ |- x \is τ ->
(τ :<= τ') ->
Γ |- (expr_descend τ' x) \is τ'
2024-07-27 13:30:12 +02:00
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
Definition is_well_typed (e:expr_term) : Prop :=
forall Γ,
exists τ,
2024-09-04 12:39:15 +02:00
Γ |- e \is τ
.
2024-09-08 15:34:15 +02:00
Inductive translate_typing : context -> expr_term -> type_term -> expr_term -> Prop :=
| Expand_Var : forall Γ x τ,
(Γ |- (expr_var x) \is τ) ->
(translate_typing Γ (expr_var x) τ (expr_var x))
| Expand_Let : forall Γ x e e' t t' σ τ,
(Γ |- e \is σ) ->
((ctx_assign x σ Γ) |- t \is τ) ->
(translate_typing Γ e σ e') ->
(translate_typing (ctx_assign x σ Γ) t τ t') ->
(translate_typing Γ (expr_let x e t) τ (expr_let x e' t'))
| Expand_TypeAbs : forall Γ α e e' τ,
(Γ |- e \is τ) ->
(translate_typing Γ e τ e') ->
(translate_typing Γ
(expr_ty_abs α e)
(type_univ α τ)
(expr_ty_abs α e'))
| Expand_TypeApp : forall Γ e e' σ α τ,
(Γ |- e \is (type_univ α τ)) ->
(translate_typing Γ e τ e') ->
(translate_typing Γ (expr_ty_app e τ) (type_subst α σ τ) (expr_ty_app e' τ))
| Expand_Abs : forall Γ x σ e e' τ,
((ctx_assign x σ Γ) |- e \is τ) ->
(Γ |- (expr_abs x σ e) \is (type_fun σ τ)) ->
(translate_typing (ctx_assign x σ Γ) e τ e') ->
(translate_typing Γ (expr_abs x σ e) (type_fun σ τ) (expr_abs x σ e'))
| Expand_MorphAbs : forall Γ x σ e e' τ,
((ctx_assign x σ Γ) |- e \is τ) ->
(Γ |- (expr_abs x σ e) \is (type_fun σ τ)) ->
(translate_typing (ctx_assign x σ Γ) e τ e') ->
(translate_typing Γ (expr_morph x σ e) (type_morph σ τ) (expr_morph x σ e'))
| Expand_App : forall Γ f f' a a' m σ τ σ',
(Γ |- f \is (type_fun σ τ)) ->
(Γ |- a \is σ') ->
(Γ |- σ' ~> σ) ->
(translate_typing Γ f (type_fun σ τ) f') ->
(translate_typing Γ a σ' a') ->
(translate_morphism_path Γ σ' σ m) ->
(translate_typing Γ (expr_app f a) τ (expr_app f' (expr_app m a')))
| Expand_MorphFun : forall Γ f f' σ τ,
(Γ |- f \is (type_morph σ τ)) ->
(Γ |- f \is (type_fun σ τ)) ->
(translate_typing Γ f (type_morph σ τ) f') ->
(translate_typing Γ f (type_fun σ τ) f')
| Expand_Ascend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
(Γ |- (expr_ascend τ' e) \is (type_ladder τ' τ)) ->
2024-09-08 15:34:15 +02:00
(translate_typing Γ e τ e') ->
(translate_typing Γ (expr_ascend τ' e) (type_ladder τ' τ) (expr_ascend τ' e'))
2024-09-08 15:34:15 +02:00
| Expand_Descend : forall Γ e e' τ τ',
(Γ |- e \is τ) ->
(τ :<= τ') ->
(Γ |- e \is τ') ->
(translate_typing Γ e τ e') ->
(translate_typing Γ e τ' e')
.
2024-08-21 20:04:20 +02:00
(* Examples *)
Example typing1 :
ctx_empty |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "T", %"T"% -> %"T"% >].
2024-07-27 13:30:12 +02:00
Proof.
intros.
apply T_TypeAbs.
apply T_Abs.
apply T_Var.
apply C_take.
2024-08-21 20:04:20 +02:00
Qed.
2024-07-27 13:30:12 +02:00
Example typing2 :
ctx_empty |- [{ Λ"T" λ "x" %"T"% %"x"% }] \is [< "U", %"U"% -> %"U"% >].
Proof.
2024-08-21 20:04:20 +02:00
intros.
apply T_DescendImplicit with (τ:=[< "T",(%"T"% -> %"T"%) >]).
2024-07-27 13:30:12 +02:00
apply T_TypeAbs.
apply T_Abs.
2024-08-21 20:04:20 +02:00
apply T_Var.
apply C_take.
2024-08-21 20:04:20 +02:00
apply TSubRepr_Refl.
apply TEq_Alpha.
apply TAlpha_Rename.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_VarReplace.
Qed.
Example typing3 :
ctx_empty |- [{
Λ"T" Λ"U" λ"x" %"T"% λ"y" %"U"% %"y"%
}] \is [<
"S","T",(%"S"%->%"T"%->%"T"%)
>].
2024-08-21 20:04:20 +02:00
Proof.
intros.
apply T_DescendImplicit with (τ:=[< "T","U",(%"T"%->%"U"%->%"U"%) >]) (τ':=[< "S","T",(%"S"%->%"T"%->%"T"%) >]).
2024-08-21 20:04:20 +02:00
apply T_TypeAbs, T_TypeAbs, T_Abs.
apply T_Abs.
apply T_Var.
apply C_take.
2024-08-21 20:04:20 +02:00
apply TSubRepr_Refl.
apply TEq_Trans with (y:= [< "S","U",(%"S"%->%"U"%->%"U"%) >] ).
2024-08-21 20:04:20 +02:00
apply TEq_Alpha.
apply TAlpha_Rename.
apply TSubst_UnivReplace. discriminate.
easy.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_Fun.
apply TSubst_VarKeep. discriminate.
apply TSubst_VarKeep. discriminate.
apply TEq_Alpha.
apply TAlpha_SubUniv.
apply TAlpha_Rename.
apply TSubst_Fun.
apply TSubst_VarKeep. discriminate.
apply TSubst_Fun.
apply TSubst_VarReplace.
apply TSubst_VarReplace.
Qed.
2024-08-22 08:31:14 +02:00
Example typing4 : (is_well_typed
[{ Λ"T" Λ"U" λ"x" %"T"% λ"y" %"U"% %"x"% }]
2024-08-22 08:31:14 +02:00
).
Proof.
unfold is_well_typed.
exists [< "T","U",%"T"%->%"U"%->%"T"% >].
2024-09-04 12:39:15 +02:00
apply T_TypeAbs.
apply T_TypeAbs.
apply T_Abs.
apply T_Abs.
apply T_Var.
apply C_shuffle, C_take.
Qed.
Open Scope ladder_expr_scope.
Example typing5 :
(ctx_assign "60" [< $""$ >]
(ctx_assign "360" [< $""$ >]
(ctx_assign "/" [< $""$ -> $""$ -> $""$ >]
ctx_empty)))
|-
[{
let "deg2turns" :=
(λ"x" $"Angle"$~$"Degrees"$~$""$
morph (((%"/"% %"x"%) %"360"%) as $"Angle"$~$"Turns"$))
in ( %"deg2turns"% (%"60"% as $"Angle"$~$"Degrees"$) )
}]
\is
[<
$"Angle"$~$"Turns"$~$""$
>]
.
Proof.
apply T_Let with (σ:=[< $"Angle"$~$"Degrees"$~$""$ ->morph $"Angle"$~$"Turns"$~$""$ >]).
apply T_MorphAbs.
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Turns"$>] [<$""$>])).
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
apply T_Ascend with (τ:=[<$""$>]) (τ':=[<$"Angle"$~$"Turns"$>]).
apply T_App with (σ := [< $""$ >]) (σ' := [< $""$ >]).
apply T_App with (σ := [< $""$ >]) (σ' := [< $""$ >]).
apply T_Var.
apply C_shuffle. apply C_shuffle. apply C_shuffle. apply C_take.
apply T_DescendImplicit with (τ := [< $"Angle"$~$"Degrees"$~$""$ >]).
apply T_Var.
apply C_take.
apply TSubRepr_Ladder. apply TSubRepr_Ladder.
apply TSubRepr_Refl. apply TEq_Refl.
apply M_Sub.
apply TSubRepr_Refl. apply TEq_Refl.
apply T_Var.
apply C_shuffle, C_shuffle, C_take.
apply M_Sub.
apply TSubRepr_Refl.
apply TEq_Refl.
apply T_App with (σ:=[<$"Angle"$~$"Degrees"$~$""$>]) (σ':=[<$"Angle"$~$"Degrees"$~$""$>]).
apply T_MorphFun.
2024-09-04 12:39:15 +02:00
apply T_Var.
2024-08-22 08:31:14 +02:00
apply C_take.
apply T_DescendImplicit with (τ:=(type_ladder [<$"Angle"$~$"Degrees"$>] [<$""$>])).
2: apply TSubRepr_Refl, TEq_LadderAssocLR.
apply T_Ascend.
apply T_Var.
apply C_shuffle. apply C_take.
apply M_Sub. apply TSubRepr_Refl. apply TEq_Refl.
2024-08-22 08:31:14 +02:00
Qed.
End Typing.