ladder-calculus/coq/terms_debruijn.v

281 lines
8.6 KiB
Coq
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From Coq Require Import Strings.String.
From Coq Require Import Lists.List.
Import ListNotations.
Require Import terms.
Inductive type_DeBruijn : Type :=
| ty_id : string -> type_DeBruijn
| ty_fvar : string -> type_DeBruijn
| ty_bvar : nat -> type_DeBruijn
| ty_univ : type_DeBruijn -> type_DeBruijn
| ty_spec : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_func : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_morph : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
| ty_ladder : type_DeBruijn -> type_DeBruijn -> type_DeBruijn
.
Inductive expr_DeBruijn : Type :=
| ex_var : nat -> expr_DeBruijn
| ex_ty_abs : expr_DeBruijn -> expr_DeBruijn
| ex_ty_app : expr_DeBruijn -> type_DeBruijn -> expr_DeBruijn
| ex_abs : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_morph : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_app : expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| varlet : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_ascend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
| ex_descend : type_DeBruijn -> expr_DeBruijn -> expr_DeBruijn
.
(* get the list of all free variables in a type term *)
Fixpoint type_fv (τ : type_DeBruijn) {struct τ} : (list string) :=
match τ with
| ty_id s => []
| ty_fvar α => [α]
| ty_bvar x => []
| ty_univ τ => (type_fv τ)
| ty_spec σ τ => (type_fv σ) ++ (type_fv τ)
| ty_func σ τ => (type_fv σ) ++ (type_fv τ)
| ty_morph σ τ => (type_fv σ) ++ (type_fv τ)
| ty_ladder σ τ => (type_fv σ) ++ (type_fv τ)
end.
(* substitute free variable x with type σ in τ *)
Fixpoint subst_type (x:string) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then σ else τ
| ty_bvar y => ty_bvar y
| ty_univ τ => ty_univ (subst_type x σ τ)
| ty_spec τ1 τ2 => ty_spec (subst_type x σ τ1) (subst_type x σ τ2)
| ty_func τ1 τ2 => ty_func (subst_type x σ τ1) (subst_type x σ τ2)
| ty_morph τ1 τ2 => ty_morph (subst_type x σ τ1) (subst_type x σ τ2)
| ty_ladder τ1 τ2 => ty_ladder (subst_type x σ τ1) (subst_type x σ τ2)
end.
(* replace a free variable with a new (dangling) bound variable *)
Fixpoint type_bind_fvar (x:string) (n:nat) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => if eqb x s then ty_bvar n else τ
| ty_bvar n => ty_bvar n
| ty_univ τ1 => ty_univ (type_bind_fvar x (S n) τ1)
| ty_spec τ1 τ2 => ty_spec (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_func τ1 τ2 => ty_func (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_morph τ1 τ2 => ty_morph (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
| ty_ladder τ1 τ2 => ty_ladder (type_bind_fvar x n τ1) (type_bind_fvar x n τ2)
end.
(* replace (dangling) index with another type *)
Fixpoint type_open_rec (k:nat) (σ:type_DeBruijn) (τ:type_DeBruijn) {struct τ} : type_DeBruijn :=
match τ with
| ty_id s => ty_id s
| ty_fvar s => ty_fvar s
| ty_bvar i => if Nat.eqb k i then σ else τ
| ty_univ τ1 => ty_univ (type_open_rec (S k) σ τ1)
| ty_spec τ1 τ2 => ty_spec (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_func τ1 τ2 => ty_func (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_morph τ1 τ2 => ty_morph (type_open_rec k σ τ1) (type_open_rec k σ τ2)
| ty_ladder τ1 τ2 => ty_ladder (type_open_rec k σ τ1) (type_open_rec k σ τ2)
end.
Notation "'[' z '~>' u ']' e" := (subst_type z u e) (at level 68).
Notation "'{' k '~>' σ '}' τ" := (type_open_rec k σ τ) (at level 67).
Definition type_open σ τ := type_open_rec 0 σ τ.
(* is the type locally closed ? *)
Inductive type_lc : type_DeBruijn -> Prop :=
| Tlc_Id : forall s, type_lc (ty_id s)
| Tlc_Var : forall s, type_lc (ty_fvar s)
| Tlc_Univ : forall τ1 L,
(forall x, ~ (In x L) -> type_lc (type_open (ty_fvar x) τ1)) ->
type_lc (ty_univ τ1)
| Tlc_Spec : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_spec τ1 τ2)
| Tlc_Func : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_func τ1 τ2)
| Tlc_Morph : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_morph τ1 τ2)
| Tlc_Ladder : forall τ1 τ2, type_lc τ1 -> type_lc τ2 -> type_lc (ty_ladder τ1 τ2)
.
(* number of abstractions *)
Fixpoint type_debruijn_depth (τ:type_DeBruijn) : nat :=
match τ with
| ty_id s => 0
| ty_fvar s => 0
| ty_bvar x => 0
| ty_func s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_morph s t => max (type_debruijn_depth s) (type_debruijn_depth t)
| ty_univ t => (1 + (type_debruijn_depth t))
| ty_spec s t => ((type_debruijn_depth s) - 1)
| ty_ladder s t => max (type_debruijn_depth s) (type_debruijn_depth t)
end.
Fixpoint type_named2debruijn (τ:type_term) {struct τ} : type_DeBruijn :=
match τ with
| type_id s => ty_id s
| type_var s => ty_fvar s
| type_univ x t => let t':=(type_named2debruijn t) in (ty_univ (type_bind_fvar x 0 t'))
| type_spec s t => ty_spec (type_named2debruijn s) (type_named2debruijn t)
| type_fun s t => ty_func (type_named2debruijn s) (type_named2debruijn t)
| type_morph s t => ty_morph (type_named2debruijn s) (type_named2debruijn t)
| type_ladder s t => ty_ladder (type_named2debruijn s) (type_named2debruijn t)
end.
Coercion type_named2debruijn : type_term >-> type_DeBruijn.
Lemma list_in_tail : forall x (E:list string) f,
In x E ->
In x (cons f E).
Proof.
intros.
simpl.
right.
apply H.
Qed.
Lemma list_in_concatA : forall x (E:list string) (F:list string),
In x E ->
In x (E ++ F).
Proof.
Admitted.
Lemma list_in_concatB : forall x (E:list string) (F:list string),
In x F ->
In x (E ++ F).
Proof.
intros.
induction E.
auto.
apply list_in_tail.
Admitted.
Lemma list_notin_singleton : forall (x:string) (y:string),
((eqb x y) = false) -> ~ In x [ y ].
Proof.
Admitted.
Lemma list_elim_notin_singleton : forall (x:string) (y:string),
~ In x [y] -> ((eqb x y) = false).
Proof.
Admitted.
Lemma subst_fresh_type : forall (x : string) (τ:type_DeBruijn) (σ:type_DeBruijn),
~(In x (type_fv τ)) ->
(subst_type x σ τ) = τ
.
Proof.
intros.
induction τ.
- reflexivity.
- unfold type_fv in H.
apply list_elim_notin_singleton in H.
simpl.
case_eq (x =? s)%string.
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHτ.
reflexivity.
apply H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
contradict H. apply list_in_concatB, H.
contradict H. apply list_in_concatA, H.
Qed.
Lemma open_rec_lc_core : forall τ j σ1 i σ2,
i <> j ->
{j ~> σ1} τ = {i ~> σ2} ({j ~> σ1} τ) ->
τ = {i ~> σ1} τ.
Proof with (eauto with *).
induction τ;
intros j v i u Neq H;
simpl in *; try solve [inversion H; f_equal; eauto].
(* case (ty_bvar).*)
destruct (Nat.eqb j n)...
destruct (Nat.eqb i n)...
Admitted.
Lemma type_open_rec_lc : forall k σ τ,
type_lc τ ->
{ k ~> σ } τ = τ.
Proof.
intros.
generalize dependent k.
induction H.
- auto.
- auto.
- intro k.
unfold type_open in *.
(*
pick fresh x for L.
apply open_rec_lc_core with (i := S k) (j := 0) (u := u) (v := x). auto. auto.
*)
admit.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
- simpl. intro. rewrite IHtype_lc1. rewrite IHtype_lc2. reflexivity.
Admitted.
Lemma type_subst_open_rec : forall τ1 τ2 σ x k,
type_lc σ ->
[x ~> σ] ({k ~> τ2} τ1) = {k ~> [x ~> σ] τ2} ([x ~> σ] τ1).
Proof.
intros.
induction τ1.
(* id *)
- auto.
(* free var *)
- simpl.
case_eq (eqb x s).
intro.
apply eq_sym.
apply type_open_rec_lc, H.
auto.
(* bound var *)
- simpl.
case_eq (Nat.eqb k n).
auto.
auto.
(* univ *)
- simpl.
admit.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
- simpl. rewrite IHτ1_1. rewrite IHτ1_2. reflexivity.
Admitted.