ladder-calculus/coq/typing.v

147 lines
3.8 KiB
Coq
Raw Normal View History

(* This module defines the typing relation
* where each expression is assigned a type.
*)
From Coq Require Import Strings.String.
Require Import terms.
Require Import subst.
2024-08-10 13:16:45 +02:00
Require Import equiv.
Include Terms.
Include Subst.
2024-08-10 13:16:45 +02:00
Include Equiv.
Module Typing.
2024-08-10 13:16:45 +02:00
(** Subtyping *)
Reserved Notation "s ':<=' t" (at level 50).
Reserved Notation "s '~=~' t" (at level 50).
Inductive is_syntactic_subtype : type_term -> type_term -> Prop :=
| S_Refl : forall t t', (t === t') -> (t :<= t')
| S_Trans : forall x y z, (x :<= y) -> (y :<= z) -> (x :<= z)
| S_SynRepr : forall x' x y, (x :<= y) -> ((type_ladder x' x) :<= y)
where "s ':<=' t" := (is_syntactic_subtype s t).
Inductive is_semantic_subtype : type_term -> type_term -> Prop :=
| S_Synt : forall x y,
(x :<= y) -> (x ~=~ y)
| S_SemRepr : forall x y y',
(type_ladder x y) ~=~ (type_ladder x y')
where "s '~=~' t" := (is_semantic_subtype s t).
Open Scope ladder_type_scope.
Example sub0 :
[ < $"Seq"$ < $"Digit"$ $"10"$ > >
~ < $"Seq"$ $"Char"$ > ]
:<=
[ < $"Seq"$ $"Char"$ > ]
.
Proof.
apply S_SynRepr.
apply S_Refl.
apply L_Refl.
Qed.
Example sub1 :
[ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ]
:<= [ < $"Seq"$ $"Char"$ > ]
.
Proof.
set [ < $"Seq"$ < $"Digit"$ $"10"$ > > ~ < $"Seq"$ $"Char"$ > ].
set [ < $"Seq"$ < $"Digit"$ $"10"$ > ~ $"Char"$ > ].
set [ < $"Seq"$ $"Char"$ > ].
set (t0 === t).
set (t :<= t0).
set (t :<= t2).
apply S_Trans with t1.
apply S_Refl.
Qed.
(** Typing Derivation *)
Inductive context : Type :=
| ctx_assign : string -> type_term -> context -> context
| ctx_empty : context
.
Inductive context_contains : context -> string -> type_term -> Prop :=
| C_take : forall (x:string) (X:type_term) (Γ:context),
(context_contains (ctx_assign x X Γ) x X)
2024-08-10 13:16:45 +02:00
| C_shuffle : forall x X y Y (Γ:context),
(context_contains Γ x X) ->
(context_contains (ctx_assign y Y Γ) x X).
2024-07-27 13:30:12 +02:00
Reserved Notation "Gamma '|-' x '\is' X" (at level 101, x at next level, X at level 0).
Reserved Notation "Gamma '|-' x '\compatible' X" (at level 101, x at next level, X at level 0).
2024-07-27 13:30:12 +02:00
Inductive expr_type : context -> expr_term -> type_term -> Prop :=
| T_Var : forall Γ x τ,
(context_contains Γ x τ) ->
(Γ |- x \is τ)
| T_Let : forall Γ s (σ:type_term) t τ x,
(Γ |- s \is σ) ->
(Γ |- t \is τ) ->
(Γ |- (expr_let x σ s t) \is τ)
| T_TypeAbs : forall Γ (e:expr_term) (τ:type_term) α,
Γ |- e \is τ ->
Γ |- (expr_ty_abs α e) \is (type_univ α τ)
| T_TypeApp : forall Γ α (e:expr_term) (σ:type_term) (τ:type_term),
Γ |- e \is (type_univ α τ) ->
Γ |- (expr_ty_app e σ) \is (type_subst α σ τ)
| T_Abs : forall (Γ:context) (x:string) (σ:type_term) (t:expr_term) (τ:type_term),
(context_contains Γ x σ) ->
Γ |- t \is τ ->
Γ |- (expr_tm_abs x σ t) \is (type_fun σ τ)
2024-07-27 13:30:12 +02:00
| T_App : forall (Γ:context) (f:expr_term) (a:expr_term) (σ:type_term) (τ:type_term),
Γ |- f \is (type_fun σ τ) ->
Γ |- a \is σ ->
Γ |- (expr_tm_app f a) \is τ
2024-07-27 13:30:12 +02:00
where "Γ '|-' x '\is' τ" := (expr_type Γ x τ).
2024-08-10 13:16:45 +02:00
2024-07-27 13:30:12 +02:00
Inductive expr_type_compatible : context -> expr_term -> type_term -> Prop :=
2024-07-27 13:30:12 +02:00
| T_Compatible : forall Γ x τ,
(Γ |- x \is τ) ->
(Γ |- x \compatible τ)
where "Γ '|-' x '\compatible' τ" := (expr_type_compatible Γ x τ).
Example typing1 :
2024-07-27 13:30:12 +02:00
forall Γ,
(context_contains Γ "x" (type_var "T")) ->
Γ |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
Proof.
intros.
apply T_TypeAbs.
apply T_Abs.
apply H.
apply T_Var.
apply H.
Admitted.
Example typing2 :
ctx_empty |- (expr_ty_abs "T" (expr_tm_abs "x" (type_var "T") (expr_var "x"))) \is
(type_univ "T" (type_fun (type_var "T") (type_var "T"))).
Proof.
2024-07-27 13:30:12 +02:00
apply T_TypeAbs.
apply T_Abs.
Admitted.
End Typing.