ladder-calculus/coq/lemmas/subst_lemmas.v

278 lines
5 KiB
Coq
Raw Normal View History

From Coq Require Import Lists.List.
Import ListNotations.
Require Import Atom.
Require Import Metatheory.
Require Import FSetNotin.
2024-09-21 13:00:57 +02:00
Require Import debruijn.
(*
* Substitution has no effect if the variable is not free
*)
Lemma type_subst_fresh : forall (x : atom) (τ:type_DeBruijn) (σ:type_DeBruijn),
x `notin` (type_fv τ) ->
([ x ~tt~> σ ] τ) = τ
.
Proof.
intros.
induction τ.
- reflexivity.
- unfold type_fv in H.
apply AtomSetNotin.elim_notin_singleton in H.
simpl.
case_eq (x == a).
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHτ.
reflexivity.
apply H.
- simpl; rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
- simpl. rewrite IHτ1, IHτ2.
reflexivity.
simpl type_fv in H; fsetdec.
simpl type_fv in H; fsetdec.
Qed.
(*
* Substitution has no effect if the variable is not free
*)
Lemma expr_subst_fresh : forall (x : atom) (t:expr_DeBruijn) (e:expr_DeBruijn),
x `notin` (expr_fv e) ->
([ x ~ee~> t ] e) = e
.
Proof.
intros.
induction e.
- unfold expr_fv in H.
apply AtomSetNotin.elim_notin_singleton in H.
simpl.
case_eq (x == a).
congruence.
reflexivity.
- reflexivity.
- simpl. rewrite IHe.
all: auto.
- simpl; rewrite IHe.
auto. auto.
- simpl; rewrite IHe.
auto. auto.
- simpl; rewrite IHe.
auto. auto.
- simpl. rewrite IHe1, IHe2.
reflexivity.
simpl expr_fv in H; fsetdec.
simpl expr_fv in H; fsetdec.
- simpl. rewrite IHe1, IHe2.
reflexivity.
simpl expr_fv in H; fsetdec.
simpl expr_fv in H; fsetdec.
- simpl; rewrite IHe.
auto. auto.
- simpl; rewrite IHe.
auto. auto.
Qed.
Lemma type_open_lc_core : forall (τ:type_DeBruijn) i (σ1:type_DeBruijn) j (σ2:type_DeBruijn),
i <> j ->
{i ~tt~> σ1} τ = {j ~tt~> σ2} ({i ~tt~> σ1} τ) ->
({j ~tt~> σ2} τ) = τ
2024-09-21 01:05:28 +02:00
.
Proof.
induction τ;
2024-09-21 01:05:28 +02:00
intros i σ1 j σ2 Neq H;
simpl in *;
inversion H;
f_equal; eauto.
(* bound var *)
- simpl in *.
destruct (j === n).
destruct (i === n).
3:reflexivity.
rewrite e,e0 in Neq.
contradiction Neq.
reflexivity.
rewrite H,e.
simpl.
destruct (n===n).
reflexivity.
contradict n1.
reflexivity.
Qed.
2024-09-21 01:05:28 +02:00
(*
* opening is idempotent on locally closed types
*)
Lemma type_open_lc : forall k σ τ,
type_lc τ ->
({ k ~tt~> σ } τ) = τ
.
Proof.
intros.
generalize dependent k.
2024-09-21 01:05:28 +02:00
induction H; eauto; simpl in *; intro k.
(* univ *)
2024-09-21 01:05:28 +02:00
f_equal.
unfold type_open in *.
pick fresh x for L.
apply type_open_lc_core with
(i := 0) (σ1 := (ty_fvar x))
(j := S k) (σ2 := σ).
2024-09-21 01:05:28 +02:00
trivial.
apply eq_sym, H0, Fr.
2024-09-21 01:05:28 +02:00
(* rest *)
all: rewrite IHtype_lc1; rewrite IHtype_lc2; reflexivity.
Qed.
2024-09-21 01:05:28 +02:00
(*
* type substitution distributes over opening
*)
Lemma type_subst_open : forall τ σ1 σ2 x k,
type_lc σ2 ->
[x ~tt~> σ2] ({k ~tt~> σ1} τ)
=
{k ~tt~> [x ~tt~> σ2] σ1} ([x ~tt~> σ2] τ).
Proof.
induction τ;
intros; simpl; f_equal; auto.
(* free var *)
- destruct (x == a).
subst.
2024-09-21 01:05:28 +02:00
apply eq_sym, type_open_lc.
assumption.
trivial.
(* bound var *)
- destruct (k === n).
reflexivity.
trivial.
Qed.
Lemma expr_open_lc_core : forall (t:expr_DeBruijn) i (s1:expr_DeBruijn) j (s2:expr_DeBruijn),
i <> j ->
{i ~ee~> s1} t = {j ~ee~> s2} ({i ~ee~> s1} t) ->
({j ~ee~> s2} t) = t
.
Proof.
induction t;
intros i s1 j s2 Neq H;
simpl in *;
inversion H;
f_equal; eauto.
(* bound var *)
- simpl in *.
destruct (j === n).
destruct (i === n).
3:reflexivity.
rewrite e,e0 in Neq.
contradiction Neq.
reflexivity.
rewrite H,e.
simpl.
destruct (n===n).
reflexivity.
contradict n1.
reflexivity.
Qed.
(*
* opening is idempotent on locally closed expressions
*)
Lemma expr_open_lc : forall k s t,
expr_lc t ->
({ k ~ee~> s } t) = t
.
Proof.
intros.
generalize dependent k.
induction H; eauto; simpl in *; intro k; f_equal; eauto.
- unfold expr_open in *.
pick fresh x for L.
apply expr_open_lc_core with (i:=0) (s1:=(ex_fvar x)) (j:=S k) (s2:=s).
discriminate.
apply eq_sym, H1.
assumption.
- unfold expr_open in *.
pick fresh x for L.
apply expr_open_lc_core with (i:=0) (s1:=(ex_fvar x)) (j:=S k) (s2:=s).
discriminate.
apply eq_sym, H1.
assumption.
Qed.
(*
* type substitution distributes over opening
*)
Lemma expr_subst_open : forall t s1 s2 x k,
expr_lc s2 ->
[x ~ee~> s2] ({k ~ee~> s1} t)
=
{k ~ee~> [x ~ee~> s2] s1} ([x ~ee~> s2] t).
Proof.
induction t;
intros; simpl; f_equal; auto.
(* free var *)
- destruct (x == a).
subst.
apply eq_sym, expr_open_lc.
assumption.
trivial.
(* bound var *)
- destruct (k === n).
reflexivity.
trivial.
Qed.